机器学习模型

当前话题为您枚举了最新的 机器学习模型。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

半监督学习构建和应用半监督机器学习模型
利用LASSO进行特征选择,并采用半监督方法训练K-最近邻、支持向量机、随机森林和神经网络之一。
MLography基于机器学习的金相学异常检测模型
MLography:这是一种新颖的机器学习方法,专注于肉类金相学中的异常检测。MLography通过数据挖掘和深度学习实现自动化的杂质检测和分析。此方法利用几何对象的异常分数来识别和量化不同的杂质类型。以下是模型的主要功能: 空间异常:检测在邻域中体积较大且距离较远的杂质,评估其异常度。 形状异常:将不对称的形状视为异常,从形状特征上突出杂质。 综合异常:结合空间和形状异常分数,呈现最具代表性的杂质对象。 区域异常:分析异常物体的空间分布,量化区域内的杂质位置和数量。 本存储库提供MLography实现细节,包括代码、数据以及MLographyENV文件,用于快速创建带所需软件包的anaconda环境。引用:如果此工具对您的研究有帮助,请引用MLography以支持进一步发展。
数据分析与机器学习工具统计模型与逻辑模型应用详解
在数据分析和机器学习领域,统计模型与逻辑模型是两种关键工具。它们被广泛应用于预测、分类和理解复杂数据集中的关系。压缩包“统计模型,逻辑模型.7z”可能包含有关如何使用MATLAB进行逻辑回归分析的实例。MATLAB是一款强大的数值计算和数据处理工具,特别适合构建统计模型。统计模型通过数学公式描述随机现象,用概率论理论帮助预测变量之间的关系。逻辑模型如逻辑回归用于二元结局变量的预测,利用Sigmoid函数将线性模型映射为概率估计。在MATLAB中实现逻辑回归需要数据预处理、模型构建、评估和预测等步骤,通过分析示例可以提升实际应用能力。
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
机器学习经典
McGrawHill出版社发行的.Tom著作的机器学习经典,涵盖数据挖掘通用算法。
机器学习SVM模型在MATLAB中的必备工具箱
随着机器学习技术的进步,支持向量机(SVM)模型在MATLAB平台上的应用日益广泛。为了成功运行SVM模型,使用者需要准备特定的工具箱和相关资源。这些工具箱提供了必要的函数和算法,帮助用户有效地构建和优化SVM模型,以解决各种复杂的数据分类和回归问题。
机器学习高斯混合模型详细资料及Matlab程序综述
包含多篇关于机器学习高斯混合模型的详细资料和Matlab程序总结。
矩阵学习与机器学习衔接
吴恩达矩阵学习是针对机器学习所设计的,可以帮助你更好地理解线性代数在机器学习中的应用,进而理解更复杂的机器学习概念。
Matlab无法运行代码问题 - 自制机器学习国内机器学习
对于此存储库的Octave/MatLab版本,请检查项目。该存储库包含用Python实现的流行机器学习算法的示例,并在后面解释了数学原理。每种算法都有交互式的Jupyter Notebook演示,使您可以使用训练数据、算法配置并立即在浏览器中查看结果、图表和预测。在大多数情况下,解释是基于Andrew Ng的。这个仓库的目的不是为了实现机器使用第三方库“单行”,而是练从头开始执行这些算法和获得更好的每种算法背后的数学理解学习算法。这就是为什么所有算法实现都称为“自制”而不是用于生产的原因。
机器学习算法实战
算法实战:探索机器学习核心 本篇带您深入浅出地了解机器学习常见算法,涵盖监督学习、无监督学习和强化学习三大类别,并结合实际案例,助您快速上手算法应用。 ### 监督学习 线性回归: 预测连续目标变量,例如房价预测。 逻辑回归: 解决二分类问题,例如判断邮件是否为垃圾邮件。 决策树: 构建树形结构进行分类或回归预测,例如客户流失预警。 ### 无监督学习 聚类分析: 将数据分组到不同的簇中,例如客户细分。 主成分分析: 降低数据维度,提取主要特征,例如图像压缩。 ### 强化学习 Q-learning: 通过试错学习最优策略,例如游戏 AI。 SARSA: 基于当前策略学习,适用于实时决策场景,例如机器人控制。 掌握这些算法将为您打开机器学习的大门,开启智能数据分析之旅。