在当今数据挖掘领域,面临着海量专利数据增长带来的挑战。传统的数据挖掘方法在处理效率准确率方面逐渐无法满足需求。为了解决这一问题,提出了一种基于尺度自适应核相关滤波的专利数据挖掘方法。该方法在传统核相关滤波跟踪的基础上,增加了尺度自适应机制,能够对数据进行自适应调整。通过计算最优的目标尺度索引,大幅提升了关键词检索的准确性,有效定位并提取目标关键信息。

尺度自适应核相关滤波方法适用于大规模数据分析,尤其在专利数据的复杂性和规模变化方面展现出强大的适应能力。实验结果显示,该方法在准确率、召回率和虚警率方面较现有方法具有显著优势,同时挖掘速度也显著提高。这种快速响应的能力在实际的专利审查和企业专利数据分析中具有重要应用价值。

在应对分类器过拟合的问题上,尺度自适应核相关滤波方法通过动态调整尺度参数来提升模型的泛化能力,降低过拟合风险。相较于传统的简单统计方法和基于区域空间分布特征的方法,本方法在关键词抽取和数据采集效率上实现了显著进步,为大规模专利数据的快速分析提供了新的思路。