关联规则发现算法是数据挖掘中的核心技术之一,广泛用于从大型数据库中挖掘有价值的信息。Apriori算法作为其中经典算法,能够在频繁项集的性质上优化搜索,但在处理大数据时因频繁扫描数据库而效率下降。为解决这一问题,提出了AprTidList算法。
AprTidList算法原理
AprTidList改进了Apriori算法的不足,使用链表结构来记录满足最小支持度的频繁项集。它在完成一次数据库全面扫描后,将所有符合条件的1-项集存入链表中。此链表记录项集出现的交易标识符(TID),在后续计算中通过遍历链表生成候选项集,从而减少了不必要的迭代和数据库扫描操作,显著提高了算法效率,尤其适合大型交易数据库。
关联规则的定义与度量
关联规则通过项集之间的相关性来揭示潜在的规律,形式通常为“如果...那么...”。其中规则的支持度表示规则项集在所有交易中的频率,而置信度表示在包含X的交易中也包含Y的概率。为提升关联规则的有效性,通常设定最小支持度和最小置信度作为筛选阈值,仅保留强度高且具有业务价值的规则。数据挖掘者关注这些强规则,以发现有实际意义的关联关系。
支持度计算与交易数据库结构
每一项集与交易的支持度均通过交易数据库中的TID进行关联计算。交易数据库的结构决定了支持度的计算效率,利用链表存储和遍历加速项集支持度统计,从而有效避免了Apriori算法的多次扫描问题,为大规模数据处理提供了高效的解决方案。