关联规则的详细解析
相关推荐
关联规则挖掘步骤解析
关联规则挖掘分为两个步骤:第一步,找出所有频繁项集,这些项集的频繁性至少和预定义的最小支持计数一致。第二步,由频繁项集生成强关联规则,这些规则必须满足最小支持度和最小置信度。
数据挖掘
8
2024-07-12
关联规则挖掘示例解析
以关联规则 A C 为例,深入解读其支持度和置信度:
支持度 (Support): 衡量规则 A C 在所有交易中出现的频率。
计算公式:support(A C) = support({A, C}) = 50%
解读:意味着在所有交易中,同时包含 A 和 C 的交易占 50%。
置信度 (Confidence): 衡量在包含 A 的交易中,也包含 C 的交易的比例。
计算公式:confidence(A C) = support({A, C}) / support({A}) = 66.6%
解读:意味着在所有包含 A 的交易中,有 66.6% 的交易也包含 C。
A
算法与数据结构
7
2024-05-23
Weka关联规则功能解析
Weka关联规则功能解析
在Weka中,关联规则以“L->R”的形式表达,其中L和R分别代表规则的前件和后件。
支持度(support): 指在一个购物篮中同时观察到L和R的概率,用P(L,R)表示。
置信度(conviction): 指购物栏中出现了L时也出会现R的条件概率,用P(R|L)表示。
关联规则的目标是生成支持度和置信度都较高的规则。除了置信度,还可以使用以下指标来衡量规则的关联程度:
Lift: P(L,R)/(P(L)P(R))
Leverage: P(L,R)-P(L)P(R)
Conviction: P(L)P(!R)/P(L,!R)
数据挖掘
9
2024-05-16
关联规则和动态关联规则简介
本内容适合于数据挖掘方向的硕士研究生阅读学习,对关联规则与动态关联规则做了简介。
数据挖掘
10
2024-04-30
改进关联规则发现的算法AprTidList方法解析
关联规则发现算法是数据挖掘中的核心技术之一,广泛用于从大型数据库中挖掘有价值的信息。Apriori算法作为其中经典算法,能够在频繁项集的性质上优化搜索,但在处理大数据时因频繁扫描数据库而效率下降。为解决这一问题,提出了AprTidList算法。
AprTidList算法原理AprTidList改进了Apriori算法的不足,使用链表结构来记录满足最小支持度的频繁项集。它在完成一次数据库全面扫描后,将所有符合条件的1-项集存入链表中。此链表记录项集出现的交易标识符(TID),在后续计算中通过遍历链表生成候选项集,从而减少了不必要的迭代和数据库扫描操作,显著提高了算法效率,尤其适合大型交易数据库。
算法与数据结构
5
2024-10-28
关联规则挖掘综述
关联规则挖掘该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
数据挖掘
10
2024-05-19
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如:
牛奶 → 面包 [20%, 60%]
酸奶 → 黄面包 [6%, 50%]
数据挖掘
12
2024-05-25
Apriori关联规则算法
Apriori算法是挖掘关联规则的经典算法,效率较高。本算法对Apriori算法进行了改进,提高了效率。
数据挖掘
9
2024-05-25
关联规则分析简介
关联分析挖掘大数据中相关联系,发现规律和模式,应用于商业决策。如购物篮分析、跨品类推荐、货架布局优化、联合促销等,提升销量、改善用户体验。
数据挖掘
11
2024-05-27