系统辨识是控制理论中重要的领域,通过观测数据建模复杂的动态系统。Newton-Raphson法是一种常用的数学优化迭代算法,广泛应用于寻找函数的根或极值点。在系统辨识中,它可用于极大似然估计(MLE),以确定最能描述数据的模型参数。极大似然估计选择在所有可能参数中使观测数据概率最大的值。Newton-Raphson法有效解决非线性方程组,通过迭代更新参数直至收敛。MATLAB环境中的强大计算能力支持其实现,常通过手动迭代过程展示算法。
Newton-Raphson法在系统辨识中的极大似然估计应用
相关推荐
极大似然估计的方法
极大似然估计方法是一种常见的统计推断方法,通过寻找使得观测数据出现的概率最大的参数值来估计参数。极大似然估计方法在统计学中具有广泛的应用,可以应用于各种数据分析和模型建立中。
算法与数据结构
1
2024-07-23
最大似然估计
估计理论导论及其在谱分析中的应用。这是一个包含实验数据验证的MATLAB程序。参考书籍:《数字谱分析》,作者弗朗西斯·卡斯塔尼耶编辑。
Matlab
2
2024-07-19
Matlab编程多变量根的Newton-Raphson方法应用
在Matlab编程中,使用Newton-Raphson方法寻找任意多变量的根。该方法适用于解决任意多项式的根。
Matlab
0
2024-09-27
Matlab开发双变量Newton-Raphson方法
Matlab开发:双变量Newton-Raphson方法。该方法适用于解决双变量非线性系统,同时也包括了对线性系统的处理。
Matlab
1
2024-07-30
同步似然方法在耦合系统中的应用
同步似然方法通过比较耦合系统的时间序列间的相似形态数量来评估统计学可能性。这种方法涉及逻辑决策,将形态的相似性与预设阈值进行比较。
算法与数据结构
2
2024-07-17
基于最大似然法的线性系统参数估计
使用最大似然法进行线性系统参数估计是一种常见的方法,同时还提供了可用于Matlab的相应程序。
Matlab
0
2024-08-30
线性模型的最大似然估计
当残差服从均值为零的正态分布时,线性模型的响应变量y服从均值为β0+β1x的正态分布。
统计分析
5
2024-05-13
Newton-Raphson Method for Non-linear System of 3 variables
您可以使用Newton-Raphson方法求解包含3个变量的非线性系统。在MATLAB开发环境中,只需输入命令“newtonv1”,然后提供3个方程、迭代次数和精度容差。程序将计算梯度的偏导数。这是一个非常友好的工具,适用于解决复杂的数学问题。
Matlab
0
2024-07-16
数值分析函数二分法、定点法、Newton-Raphson和Muller方法的MATLAB开发
该数值分析函数利用MATLAB实现了二分法、定点法、牛顿-拉夫森法和穆勒法,每个方法都能计算给定函数的根,并提供可选的迭代表。
Matlab
0
2024-08-29