系统辨识是控制理论中重要的领域,通过观测数据建模复杂的动态系统。Newton-Raphson法是一种常用的数学优化迭代算法,广泛应用于寻找函数的根或极值点。在系统辨识中,它可用于极大似然估计(MLE),以确定最能描述数据的模型参数。极大似然估计选择在所有可能参数中使观测数据概率最大的值。Newton-Raphson法有效解决非线性方程组,通过迭代更新参数直至收敛。MATLAB环境中的强大计算能力支持其实现,常通过手动迭代过程展示算法。