(3)对变量y和x1、x2进行线性回归分析:假设X=[ones(13,1) x1 x2]; 利用regress函数进行拟合得到参数估计结果:b = 52.5773 1.4683 0.6623。因此,最终的回归模型为:y=52.5773+1.4683x1+0.6623x2。
对变量y和xx进行线性回归分析
相关推荐
使用Matlab开发线性回归计算x和y的关系
开发Matlab程序以计算线性回归参数a和b,然后绘制结果图表。
Matlab
0
2024-08-17
不使用正则化的多变量线性回归展示Matlab开发中的线性回归
利用房屋特征预测房价是一个常见的数据分析任务。演示了如何使用Matlab开发环境进行多变量线性回归,以确定房屋特征与房价之间的关系,而不使用正则化技术。
Matlab
0
2024-09-27
matlab开发非正则化多变量线性回归
matlab开发:非正则化多变量线性回归。这篇文章演示了如何使用Matlab进行非正则化多变量线性回归分析。
Matlab
2
2024-07-17
线性回归
使用Python实现最小二乘法进行线性回归。
算法与数据结构
5
2024-04-30
线性模型与时间序列分析:回归、方差分析、ARMA 和 GARCH
《线性模型与时间序列分析:回归、方差分析、ARMA 和 GARCH》[Paolella2018] 高清原版 PDF,已裁边优化阅读体验。如需恢复原始页面,可使用 PDF Xchange Pro 软件,操作步骤如下:1. 打开 PDF 文件。2. 点击左下角“选项” -> “视图” -> 页面缩略图(快捷键 Ctrl+T)。3. 在左侧面板中显示页面缩略图后,右键点击任意页面,选择“裁剪页面”(快捷键 Ctrl+Shift+T)。4. 在弹出的菜单中,点击“设为 0” -> (页码范围框中)选中“全部” -> 确定。
算法与数据结构
4
2024-05-21
Matlab中的多元线性回归分析
多元线性回归分析是一种统计方法,探索多个自变量与因变量之间的关系,介绍了其基本原理及在Matlab中的实现方法。
Matlab
3
2024-07-30
利用梯度下降法进行回归分析
梯度下降法是一种优化算法,用于寻找系统模型中系数的最佳值。通过迭代过程,算法调整系数,最小化目标函数,通常是平方误差函数。展示了使用梯度下降法对随机生成的数据进行建模的具体实现。此外,我们探索了不同学习率技术对模型拟合效果的影响。
Matlab
3
2024-05-31
SPSS统计分析与应用多元线性回归中的自变量选择探讨
在多元线性回归分析中,选择合适的自变量尤为关键。引入过少的自变量可能无法充分解释因变量的变化,但也不宜引入过多,以避免多重共线性问题。本讲义深入探讨了自变量选择的策略,帮助读者理解在实际应用中如何优化回归模型。
统计分析
3
2024-07-22
Matlab中的pinv函数应用于多变量线性回归
在这个项目中,我们将使用Matlab的pinv函数实现具有多个变量的线性回归,以预测房屋价格。任务描述如下:假设您正在出售房屋,并且希望确定一个合理的市场价格。为了达到这个目的,我们首先收集了有关最近房屋出售情况的数据,并且对房屋价格进行了建模。数据集ex1data2.txt包含了俄勒冈州波特兰市的房屋价格训练集,其中第一列是房屋大小(平方英尺),第二列是卧室数量,第三列是房屋价格。我们将使用梯度下降和Matlab的pinv函数两种方法来解决这个问题。特征归一化是实现过程中的一部分。数据加载后,我们将显示数据集中的前10个样本值。
Matlab
0
2024-08-23