数据仓库技术是在充分利用信息资源的迫切需求下迅速发展的国际前沿研究领域。分析了传统决策支持系统开发中存在的问题,并探讨了数据仓库技术在决策支持系统建设中的应用。文章提出了基于决策支持系统的基本结构框架,并讨论了数据仓库在数据组织与设计、数据挖掘以及知识发现等关键技术层面的应用。最后详细阐述了系统建设的方法。
基于数据仓库的决策支持系统框架研究
相关推荐
数据仓库与决策支持系统详解
数据仓库(Data Warehouse)和数据集市(Data Mart),是决策支持系统(Decision Support System)中的重要组成部分。它们支持联机分析处理(OLAP)、ROLAP和MOLAP,利用元数据(Meta Data)来定义分析指标(Measure)和维度(Dimension)。数据模型包括星型模型(Star Schema)和雪花模型(Snow Schema),同时支持数据钻入和数据钻出(Drill Down / Drill Up)、表旋转(Table Rotation)以及数据挖掘(Data Mining)。
Oracle
2
2024-07-25
电信决策支持系统中数据仓库架构设计
电信企业可利用数据仓库技术建立决策支持系统,架构包含逻辑架构和物理架构。逻辑架构运用数据仓库、联机分析处理、数据挖掘、模型库、知识库等技术;物理架构则负责数据存储和处理。此外,该系统还支持数据挖掘方法,为决策提供依据。
数据挖掘
6
2024-04-30
决策支持系统概览
决策支持系统整合大量数据,结合模型,通过人机交互协助决策者科学决策。涵盖传统决策支持系统、智能决策支持系统、数据仓库与数据挖掘、综合决策支持系统。
数据挖掘
5
2024-05-15
数据仓库:决策支持的数据基石
数据仓库:决策支持的数据基石
数据仓库并非简单的数据库,它以支持管理决策为核心目标,具备以下鲜明特征:
面向主题: 数据组织围绕特定主题,如“产品”、“客户”等,提供决策所需的简明信息视图。
数据集成: 整合来自多个异构数据源的数据,消除信息孤岛,构建统一数据视图。
时变性: 数据存储包含时间维度,记录历史变化,为决策提供全面的时间视角。
非易失性: 数据相对稳定,主要用于分析和查询,与实时操作数据分离,确保数据安全。
数据仓库作为决策支持数据模型的物理实现,为企业战略决策提供信息支撑,并通过整合异构数据源,构建支持结构化查询、分析报告和决策制定的体系结构。
数据挖掘
2
2024-05-25
基于决策树分类的粮食轮换支持系统研究
在粮食轮换决策过程中,国家粮食存储企业面临许多挑战。近年来,粮食管理信息系统的广泛应用使得粮食数据信息大量积累。通过数据挖掘中的决策树分类方法,该粮食轮换决策支持系统在丰富的粮食轮换样本数据的基础上,成功提取出有效的决策知识。这些知识不仅支持粮食轮换决策的科学化和合理化,还在某地区粮食管理部门与企业的试运行中表现稳定,有效提升了粮食轮换的决策效能。
数据挖掘
0
2024-10-28
基于数据挖掘的体育训练模式决策支持系统
基于数据挖掘技术,研究了一种体育训练模式决策支持评估系统。分析了关联规则算法,详述了数据的预处理、数据挖掘和模式评估功能。重点讲解了关联规则对体育评价决策支持系统中相关的数据融合处理,提出了改进Apriori算法输出模式,提高了系统评估的效果。通过仿真对比,改进Apriori算法有效实现了体育训练模式的决策支持。
数据挖掘
3
2024-04-30
决策支持系统的集成化模型分析与研究(2012年)
随着计算机和自动数据收集工具的广泛应用,大量数据持续被采集和存储在数据库中,从而形成了对大数据挖掘的巨大需求。在现有的数据挖掘技术基础上,提出了一种集成化的关联规则挖掘方法,该方法综合了联机分析处理技术和关联规则挖掘Cube_DM算法,通过决策分析工具软件DBMiner系统,能够有效地分析数据挖掘结果。
数据挖掘
0
2024-08-10
优化数据挖掘的决策支持系统设计方案
在数据挖掘领域,设计一种优化决策支持系统的方案至关重要。
数据挖掘
2
2024-07-14
作物管理决策支持系统的构件化应用
利用构件化生长模型开发的作物管理决策支持系统,提高农作物生产效率。
SQLServer
1
2024-07-24