针对Android手机恶意软件日益增多,应用商店在大规模软件安全性检测上遇到的挑战,提出了一种轻量级恶意软件检测方案。方案首先分析了大量恶意软件和正常软件样本的权限信息,通过去冗余处理权限频率特征,最终采用最小距离分类器进行软件分类。实验结果显示,该方案不仅具备可行性,而且在方案复杂度和检测效果上优于同级别方案,适用于大规模恶意软件的初步检测。
研究论文Android恶意软件检测方案基于最小距离分类器
相关推荐
基于距离学习的集成KNN分类器研究论文
近年来,数据挖掘在信息产业界引起了极大的关注,主要由于数据量巨大且具有广泛的适用性,急需将这些数据转化为实用的信息。于飞和顾宏研究了基于距离学习的集成KNN分类器,探索其在数据处理中的潜力。
数据挖掘
3
2024-07-17
安卓权限信息下的恶意软件检测研究
提取应用权限信息,统计分析恶意软件与良性软件差异,利用机器学习分类,实现静态检测恶意软件。该方法可有效预判恶意软件,准确率较高。
数据挖掘
6
2024-05-01
基于最小欧氏距离的QAM检测方法
基于最小欧氏距离的QAM检测方法。使用Matlab进行QAM开发,寻找欧几里得距离的最小值。
Matlab
0
2024-08-17
Android手机通讯录的研究论文
在Android操作系统中,手机通讯录是一个至关重要的功能,不仅提供联系人存储、查找和管理便捷,还与其他应用程序和服务紧密集成。这篇研究论文涉及Android系统架构,通讯录应用的联系人API使用,以及数据安全与隐私保护。
MySQL
0
2024-09-27
基于全局最小冗余的多视角分类方法研究综述
论文主题
本篇论文研究探讨了数据挖掘中的特征选择方法,重点提出了一种基于全局最小冗余的多视角分类技术,通过减少数据冗余提升分类准确率。
特征选择
特征选择是数据挖掘过程中的关键步骤,主要通过选取原始数据集中的特征子集以保留重要信息。研究表明,高维特征会导致维数灾难,不仅增加算法的复杂度,也影响分类准确率和效率。合理的特征选择不仅有助于降低模型复杂度,缩短训练时间,而且在提升分类效率上尤为显著。
多视角学习
多视角学习是将来自不同来源或视角的数据集成,增强对数据的理解。现实中的数据往往多角度,例如社会事件的多方报道。多视角分类方法通过整合这些视角数据,提取丰富信息,提升分类效果。
核心创新点
论文的创新点在于基于全局最小冗余的特征选择算法的提出。传统多视角分类方法忽略了视角间的冗余问题,而此算法通过在各个视角中消除冗余,实现信息最大化,显著提升了分类的准确率。
实验验证与结果
实验结果对比显示,基于全局最小冗余的特征选择算法在分类准确率上优于传统方法。这表明,通过合理的特征选择,能在多视角数据背景下显著增强分类性能。
研究意义
本研究不仅在多视角分类方面带来准确率的提升,还为高维数据处理提供了新的方法。该方法为复杂数据集设计高效模型提供了有效手段。
数据挖掘
0
2024-10-28
QAM调制器接收信号的欧氏距离最小检测方法-MATLAB开发
该程序用于检测使用QAM作为调制器的系统的接收信号。根据与其他信号的最小欧几里得距离来决定信号的接收质量。
Matlab
0
2024-09-20
论文研究-基于Hadoop平台的SVM_WNB分类算法的研究.pdf
SVM算法和朴素贝叶斯分类算法在复杂数据分类中表现优异,但其缺点影响了分类效果。传统数据挖掘算法无法满足海量数据处理需求。为解决这些问题,改进了朴素贝叶斯算法,提出SVM_WNB分类算法,并在Hadoop云平台上实现并行处理,从而处理大数据。实验表明,改进后的算法在准确性和效率上有显著提升,对大数据分类有显著效果。
数据挖掘
2
2024-07-12
论文研究-基于遗传的PAM算法
从给定文件的信息中,我们可以提取和总结出以下IT知识点: 1. 数据挖掘的概念与发展:数据挖掘是通过算法搜索大量数据中隐藏信息的过程,目的是为人类服务。随着数据量的急剧增长,数据挖掘成为研究热点,备受关注。在数据挖掘领域,聚类是一个核心工具,其研究具有特殊重要性。 2. PAM算法的介绍与应用场景:PAM(Partitioning Around Medoids)算法是经典的K-中心聚类算法,通过选择簇中的中心点来代表整个簇。PAM算法对异常值和孤立点有良好的鲁棒性,并能处理不同类型的数据点。尤其适用于小数据集,但对输入参数较为敏感。 3. 遗传算法的概念与优势:遗传算法是一类模仿生物进化过程的优化算法,通过模拟自然选择和遗传学原理来解决问题。广泛应用于各种优化和搜索问题,尤其在问题空间较大时,能快速找到全局最优解。 4. 遗传算法与PAM结合的优势:PAM算法对输入参数敏感,研究者尝试引入遗传算法优化输入参数,提高聚类质量和算法效率。结合遗传算法的PAM(GPAM)能够提升聚类准确性和运行速度,有助于更高效地处理数据挖掘任务。 5. PAM算法的具体步骤与原理:PAM算法首先随机选择每个簇的初始中心点,然后根据与中心点的相异度将剩余对象分配给最近的簇。通过替换非代表对象和中心点的不断迭代,提升聚类质量。聚类质量的评估依赖于代价函数,用于判断替换是否能提升聚类效果。 6. 数据挖掘中的k中心点算法与k均值算法对比:k中心点算法与k均值算法主要区别在于,前者使用簇中的中心点作为参照,而后者使用均值。k均值算法对离群点敏感,易受极端值影响,导致聚类结果失真,而k中心点算法更为健壮。 7. 数据挖掘中的聚类问题及其解决策略:聚类问题是将数据集中的对象分组,使同组对象相似度高,不同组对象相似度低。PAM算法通过反复迭代优化中心点选择,提升聚类效果。通过这些知识点的详细解释,了解在数据挖掘领域如何改进经典聚类算法,结合优化算法解决实际问题,实现更高效智能数据处理。
数据挖掘
0
2024-10-10
研究论文-基于GPU的朴素贝叶斯算法在文档分类中的应用
朴素贝叶斯算法是数据挖掘中重要的一部分,探讨了其在GPU上的设计与实现。分类算法通常使用高维向量来表示特征值,广泛应用于现实生活中。
数据挖掘
2
2024-07-15