近年来,数据挖掘在信息产业界引起了极大的关注,主要由于数据量巨大且具有广泛的适用性,急需将这些数据转化为实用的信息。于飞和顾宏研究了基于距离学习的集成KNN分类器,探索其在数据处理中的潜力。
基于距离学习的集成KNN分类器研究论文
相关推荐
研究论文Android恶意软件检测方案基于最小距离分类器
针对Android手机恶意软件日益增多,应用商店在大规模软件安全性检测上遇到的挑战,提出了一种轻量级恶意软件检测方案。方案首先分析了大量恶意软件和正常软件样本的权限信息,通过去冗余处理权限频率特征,最终采用最小距离分类器进行软件分类。实验结果显示,该方案不仅具备可行性,而且在方案复杂度和检测效果上优于同级别方案,适用于大规模恶意软件的初步检测。
数据挖掘
8
2024-10-15
数据挖掘导论KNN分类器详解
数据挖掘导论(第二版),中文第4章:K最近邻分类器(K-Nearest Neighbor,KNN)是数据挖掘和机器学习领域广泛应用的一种基本分类算法。其核心思想是:如果一个对象与另一个对象非常相似,它们可能属于同一类别。KNN分类器需要三个基本要素:存储的数据集、距离度量标准和最近邻数k。在分类过程中,KNN首先计算未知对象与最近邻的距离,确定k个最近邻,然后利用它们的类别标识确定未知对象的类别。最近邻的定义是:K-最近邻是指与目标对象距离最近的k个数据点。计算距离的方法包括欧几里得、曼哈顿和闵可夫斯基等。K的选择对KNN至关重要,过小的k易受噪声影响,过大的k可能包含远离目标点的数据。通常需
数据挖掘
16
2024-07-17
Boosting分类器集成方法
Boosting 的思路其实挺有意思的,用一堆“猜得不咋地”的弱分类器,组合出一个“猜得还挺准”的强分类器。嗯,听起来像在开玩笑?但真不夸张,尤其是像AdaBoost这种,用得好,效果杠杠的。
Boosting 分类器的核心玩法,就是每轮都盯着上次分错的数据,重点照顾一下。每次一调整,全局效果就能拉高一点点。就像打怪升级,一点点补血,就能打 Boss。
要是你是搞 MATLAB 开发的,那下面这些资源还挺值一看的,尤其是AdaBoost相关的代码,结构清晰、逻辑清楚,拿来练手或者改造都蛮方便。比如这个:adaboost 利用弱分类器集成强二元分类器的 Adaboost 方法——matlab 开
数据挖掘
0
2025-06-18
k最近邻(kNN)分类器多类分类中的应用-matlab开发
功能1. kNNeighbors.predict() 2. kNNeighbors.find()描述1.返回一个或多个测试实例的估计标签。 2.返回k个最接近的训练实例的索引及其距离。 使用鸢尾花数据集的示例加载fisheriris X =测量值; Y =物种; Xnew = [min(X);mean(X);max(X)]; k = 5;公制= '欧几里得'; mdl = kNNeighbors(k,metric); mdl = mdl.fit(X,Y); Ypred = mdl.predict(Xnew) Ypred = 'setosa' '杂色' '弗吉尼亚' Ynew = {'versi
Matlab
17
2024-07-28
adaboost 利用弱分类器集成强二元分类器的Adaboost方法——matlab开发
本项目实现了Adaboost方法,利用一系列弱分类器集成强二元分类器。我们选用决策树桩作为弱分类器,展示了在合成数据集和包含数字图像的MNIST数据集上的分类效果。
Matlab
17
2024-08-09
压缩分类器基于随机投影实现MATLAB开发的鲁棒降维分类器
SC - 稀疏分类器,FSC - 快速稀疏分类器,GSC - 群稀疏分类器,FGSC - 快速群稀疏分类器,NSC - 最近子空间分类器,使用SPGL1 - [链接] 进行稀疏化,使用GroupSparseBox - [链接],更多详情请参阅 [链接]。
Matlab
11
2024-07-22
三种典型贝叶斯分类器研究
朴素贝叶斯分类器的思路比较简单,核心就是“属性之间互不影响”这一个假设,算后验概率的时候快,适合你手头数据不太大,特征又不少的情况。嗯,代码写起来也不复杂,像用在文本分类、垃圾邮件过滤这些场景,效果还不错。
TAN 分类器是在朴素贝叶斯上做了点优化,不再强求特征之间完全独立,它引入了一种“树形结构”的方式,稍微麻烦点,但可以捕捉到特征间的依赖关系,分类准确率会更高一点。尤其数据稍微复杂时,TAN 更靠谱。
贝叶斯网络分类器就更高级了,整一个图形结构来表示特征间的依赖关系,灵活性蛮强,就是建图的时候稍微有点费劲,需要先做结构学习,再做参数学习。适合你要的数据比较复杂、噪声比较多的场景,比如医疗诊
数据挖掘
0
2025-06-16
Matlab贝叶斯分类器
Matlab 写的贝叶斯分类器,结构清晰,分类准确率也挺高,适合用来做入门测试或者小型实验。你只要把样本特征和标签整理好,直接扔进去跑就行,省事又高效。
Matlab 的贝叶斯算法实现起来其实挺直接,用到的就是朴素贝叶斯思想——每个特征独立,概率乘起来搞定分类。别看原理简单,效果还真不赖,尤其在样本不大的时候。
代码部分也不复杂,像是fitcnb这种内置函数直接拿来用就行,想改也方便。需要注意的是,数据预别偷懒,归一化、缺失值这些问题好了,分类器表现才能稳定。
另外,如果你对贝叶斯的数学基础不太熟,可以看看这篇贝叶斯公式与朴素贝叶斯文章,讲得比较清楚,思路也比较顺。
想再进阶一点?有现成的Ma
Matlab
0
2025-06-22
基于神经网络的图像分类器
这段Matlab代码展示了如何使用神经网络进行图像分类。它使用了Matlab的 newff 函数来构建和训练神经网络。代码采用了监督分类技术,需要为每个类别选择合适的训练区域,并使用这些区域的数据来训练神经网络。训练数据存储在CSV文件中,其中包含训练区域的像素值和对应的类别标签。
为了进行分类,需要将待分类的图像转换为CSV文件,其中每行代表一个像素,每列代表一个颜色通道 (红、绿、蓝)。然后,将这个CSV文件输入到训练好的神经网络中进行分类。由于处理的图像可能很大,分类过程可能需要一些时间。
Matlab
13
2024-05-21