数据挖掘是从海量数据中提取有价值知识的过程,在计算机科学、数据库和人工智能领域具有重要角色。它不仅限于简单的数据检索,利用多种算法和技术深度分析数据,揭示隐藏的模式、趋势和关联,支持决策和业务优化。数据挖掘包括数据预处理、模式识别、模型验证等多个环节,任务涵盖关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。其核心特点在于自动化和深度分析,使用决策树、神经网络、贝叶斯网络、支持向量机等算法进行模式发现。发展至今,数据挖掘应用已扩展至社交媒体、生物信息学和推荐系统等多领域。