数据挖掘是一本关于发现大数据集中隐藏模式的教材。它重点介绍了数据挖掘的基本概念和技术,强调使用数据库技术实现可扩展和高效的数据挖掘工具。
数据挖掘:原理与应用
相关推荐
数据挖掘:SPSS Clementine 原理与应用入门
数据挖掘:SPSS Clementine 原理与应用入门
1. SPSS Clementine 简介
2. SPSS Clementine 帮助获取
3. SPSS Clementine 应用领域
4. SPSS Clementine 数据挖掘入门指南
数据挖掘
2
2024-05-25
SPSS Clementine应用技巧与数据挖掘原理详解
《数据挖掘原理与SPSS Clementine应用宝典》(元昌安主编,电子工业出版社)一书随附光盘,详细介绍了SPSS Clementine应用的技巧和数据挖掘原理。
数据挖掘
4
2024-07-13
数据挖掘原理与SPSS-Clementine应用指南
5.2.2.1.相关概念t假定给定的样本数据为Y、X,其中因变量样本数据矩阵Y=(y1,y2,…,yn)是p×n样本矩阵,即p个因变量,n个样本;自变量样本数据矩阵X是q×n矩阵,即q个自变量,n个样本。在实际计算时,X一般是将原始数据中心化后得到的样本矩阵,即:X×1n=0。
数据挖掘
3
2024-07-15
数据挖掘原理与SPSS-Clementine应用指南
图21-91展示了线性回归节点汇总页签的详细内容,涵盖了数据挖掘原理与SPSS-Clementine应用的重要节点。
数据挖掘
3
2024-07-16
SPSS数据挖掘原理与应用详解Clementine工具
数据挖掘是从海量数据中提取有价值信息的过程,结合统计学、机器学习、数据库技术和人工智能等多领域知识。本书详细探讨数据挖掘的核心概念和技术,重点介绍了如何利用SPSS的Clementine工具进行数据预处理、模型构建、评估和结果解释。Clementine提供了强大的数据清洗、转换和多种经典算法,如决策树、贝叶斯网络、神经网络等,帮助用户有效解决市场预测、客户细分、风险评估等问题。书中还介绍了Clementine的灵活性和可扩展性,支持用户自定义模块和与其他SPSS产品集成,提升数据驱动决策能力。
数据挖掘
1
2024-07-17
数据挖掘原理与SPSS-Clementine应用宝典
用户可以从数据流的任何非终端节点中生成用户输入节点。具体步骤包括:(1)确定在流程的哪一点输入节点;(2)右键单击节点并选择“生成用户输入节点(P)”,将节点数据导入用户输入节点;(3)用户输入节点负载了流程下游的所有过程,代替原有节点。生成后,节点从原数据中继承了所有数据结构和字段类型信息(如果可以继承)。
数据挖掘
2
2024-07-18
数据挖掘原理与SPSS-Clementine应用指南
19.2.4统计汇总图19-21展示了一个汇总节点的实例。汇总节点能够将一系列输入记录转换为综合且总结性的输出记录,具体的汇总对话框如图19-21所示。
数据挖掘
0
2024-08-10
数据挖掘原理与SPSS-Clementine应用指南
图19-23展示了如何设置和读取追加节点数据。追加节点通过从同一数据源读取所有记录,并保持数据结构的一致性,直至数据源无更多记录。
数据挖掘
0
2024-10-12
数据挖掘原理与SPSS-Clementine应用宝典
在这本书中,我们深入探讨了数据挖掘的基础原理,并详细介绍了如何利用SPSS-Clementine软件进行应用。通过本书,读者可以系统地学习数据挖掘技术,掌握SPSS-Clementine的实际操作技能。
数据挖掘
0
2024-10-16