数据挖掘和统计分析最初由专家系统和人工智能发展而来,重点在于结合商业经验和知识来评估其成功与否。数据挖掘不需要关于数据集的任何先验假定,可以发现大数据集中的潜在规律,前提是需要深入理解数据和商业问题。数据挖掘主要依赖统计量来评估模型的质量,这要求数据满足假定(如正态性)。模型的统计量结果用于假设检验,以评估关系的显著性。在处理大数据时,更多地依赖抽样方法进行统计分析。