有意下载FMA隐约集合small分类下4257首音频的测试情感标注的同学,请在没有积分的情况下与我联系。
FMA隐约集合small分类情感标注测试下载
相关推荐
微博评论情感标注
自然语言情感分析主要应用于微博评论,通过算法识别用户情感倾向,帮助了解公众情绪动态。利用机器学习模型,系统能高效分类情感类别,提高数据处理效率。
算法与数据结构
2
2024-07-12
中文情感文本标注语料库
精选2万多条标注好的中文情感分类语料,可用于模型训练和情感分析练习。
spark
4
2024-05-13
情感分析资源下载
在技术领域,情感分析是一项重要的自然语言处理任务,涉及对文本情感倾向的判断,如积极、消极或中性。关注利用支持向量机(SVM)算法对微博评论进行情感分类,详细介绍了SVM及其在Python环境中的实现过程。SVM是监督学习模型,广泛用于分类和回归分析。在情感分析中,SVM通过最优超平面将不同情感类别的文本分隔,最大化样本间的间隔以实现最佳分类效果。其优势在于处理高维非线性问题,通过核函数映射转换数据至可线性分离形式。Python中,使用Scikit-learn库实现SVM,包括文本预处理(如去除停用词、标点、词干提取或词形还原)及数据转换(如TF-IDF或词袋模型)。分为训练集和测试集,训练SVM模型,并评估性能。示例代码如下:from sklearn.svm import SVC from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer() X_train_tfidf, X_test_tfidf, y_train, y_test = train_test_split(X, y, test_size=0.2) svm_classifier = SVC(kernel='rbf', C=1) svm_classifier.fit(X_train_tfidf, y_train)。
算法与数据结构
2
2024-07-22
商品分类数据的完整集合
这是一个包含几乎所有行业商品分类的数据集合,详细说明了三级商品分类、商品分类对应的品牌数据以及计量单位数据。文件包括:tb_bas_prod_category.sql(9000多条三级商品分类)、tb_bas_prod_category_brands.sql(54万多条品牌数据)、tb_bas_prod_category_units.sql(4万多条计量单位数据)。
MySQL
2
2024-07-16
中文文本分类语料库测试集下载
中文文本分类语料库测试集下载包含了复旦大学李荣陆提供的测试语料。其中,test_corpus.rar包含9833篇文档,用于测试;train_corpus.rar则是包含9804篇文档的训练语料。两个语料库各分为20个相同类别,并按照1:1的比例划分。
算法与数据结构
2
2024-07-14
基于Word2vec的跨领域情感分类
本论文提出一种基于Word2vec的跨领域情感分类方法,采用word2vec对不同领域的文本数据进行词嵌入,并利用情感词典和情感得分模型进行情感分类,有效解决了传统方法难以处理不同领域数据的情感极性判断问题。
数据挖掘
5
2024-05-01
情感识别技术的特征提取与分类方法
包括使用特征降维的语音情感识别、基于支持向量机的语音情感识别、基于神经网络的语音情感识别以及基于K近邻分类算法的语音情感识别程序。
Matlab
0
2024-08-27
Inventory Management System for Small Goods
Inventory Management System
The Inventory Management System is a specialized application designed to handle small goods inventory management using the powerful visual development tool PowerBuilder (PB). PB is a well-established, object-oriented programming environment, particularly suitable for developing enterprise-level database applications. This system is built to help users efficiently track and manage inventory, maintaining optimal stock levels and preventing overstock or stockouts.
Core Features:
Inbound Management: When new goods arrive, the system records all relevant details—such as supplier, quantity, and date—accurately adding new items to the inventory.
Outbound Management: When processing sales orders or item transfers, the system automatically reduces inventory levels of the specified goods and generates corresponding outbound documents, facilitating easy tracking.
Inventory Inquiry: Users can view the current inventory status at any time, checking quantities and locations of items to respond to market demand swiftly.
Inventory Alerts: The system triggers an alert when any item falls below the preset threshold, reminding users to restock and prevent shortages.
Stock Counting: Conduct regular stock takes to verify that actual stock matches system records, addressing any discrepancies.
Report Analysis: Provides various reports, such as inbound/outbound statistics and inventory turnover rate analysis, to help managers make data-driven decisions.
Access Control: Permissions are assigned based on employee roles, with each role limited to specific actions, ensuring data security.
System Integration: The Inventory Management System can integrate seamlessly with other business systems (e.g., ERP, CRM), enhancing overall operational efficiency.
User Interface: Applications developed in PB feature intuitive graphical user interfaces, making operations simple and lowering learning curves.
Customization: PB’s flexible development capabilities allow for system customization to meet specific business needs, catering to diverse operational scenarios.
This Inventory Management System offers significant benefits in small goods inventory management, enhancing efficiency and reducing human error. It is an indispensable tool for small goods retailers or wholesalers aiming to optimize inventory strategy, reduce costs, and increase operational efficiency.
Sybase
0
2024-10-25
基于小规模标注语料的增量式Bayes文本分类算法
文本自动分类是数据挖掘和机器学习中重要的研究领域。针对难以获取大量带类标签的训练集的问题,提出了基于小规模标注语料的增量式Bayes文本分类算法。该算法分两种情况处理:一是对于新增有类标签的样本,直接重新计算其属于某类别的条件概率;二是对于新增无类标签的样本,利用现有分类器为其指定类标签,然后利用新样本来修正分类器。实验证明,该算法有效且可行,相较于Naive Bayes文本分类算法,精度更高。增量式Bayes分类算法的提出为分类器更新开辟了新的途径。
数据挖掘
1
2024-07-13