文本自动分类是数据挖掘和机器学习中重要的研究领域。针对难以获取大量带类标签的训练集的问题,提出了基于小规模标注语料的增量式Bayes文本分类算法。该算法分两种情况处理:一是对于新增有类标签的样本,直接重新计算其属于某类别的条件概率;二是对于新增无类标签的样本,利用现有分类器为其指定类标签,然后利用新样本来修正分类器。实验证明,该算法有效且可行,相较于Naive Bayes文本分类算法,精度更高。增量式Bayes分类算法的提出为分类器更新开辟了新的途径。
基于小规模标注语料的增量式Bayes文本分类算法
相关推荐
基于Hadoop平台的大规模文本分类并行化研究
文本分类作为信息检索与数据挖掘的核心技术和研究热点,在近年来得到了广泛关注和快速发展。随着文本数据量的指数增长,有效管理这些数据的需求日益迫切。在分布式环境下,采用基于Hadoop平台的TFIDF分类算法,这是一种简单而有效的文本分类算法,基于向量空间模型和余弦相似度进行分类。通过对两个数据集的实验验证,结果表明这种并行化算法在大数据集上表现出色,具有实际应用的潜力。
数据挖掘
2
2024-07-14
中文文本分类语料库测试集下载
中文文本分类语料库测试集下载包含了复旦大学李荣陆提供的测试语料。其中,test_corpus.rar包含9833篇文档,用于测试;train_corpus.rar则是包含9804篇文档的训练语料。两个语料库各分为20个相同类别,并按照1:1的比例划分。
算法与数据结构
2
2024-07-14
基于类别特性的 KNN 文本分类算法改进
论文提出了一种基于独立类别特性的改进 KNN 文本分类算法,该算法通过利用文本的不同类别特征来提高分类精度。
数据挖掘
4
2024-04-30
中文情感文本标注语料库
精选2万多条标注好的中文情感分类语料,可用于模型训练和情感分析练习。
spark
4
2024-05-13
Matlab交互式文本标注
Matlab交互式文本标注
使用 gtext 命令,您可以通过鼠标点击图形界面,选择文本标注的位置,并输入相应的文本内容。
Matlab
4
2024-05-28
基于标签主题模型的网络文本分类研究
随着互联网的快速发展,文本自动分类在数据挖掘中显得尤为重要。基于标签主题模型的研究,更好地帮助人们挖掘和利用有用信息。
数据挖掘
2
2024-07-14
Web挖掘与文本分类中的特征选择算法
面对海量Web数据,如何高效处理和分析成为关键。特征选择算法作为数据挖掘、文本分类以及Web分类的核心技术之一,为我们提供了有效解决方案。通过筛选最具代表性的特征,该算法可以降低数据维度、提高模型效率,并提升分类精度。
数据挖掘
3
2024-05-25
大规模语料驱动的新词发现算法
大规模语料驱动的新词发现算法
在大数据时代,海量文本数据为自然语言处理提供了前所未有的机遇。其中,新词发现作为一项基础性任务,对于语言理解、信息抽取等应用至关重要。本研究聚焦于如何利用大规模语料,设计高效、准确的新词发现算法。
该算法的核心思想是,从海量文本数据中自动学习词语的统计特征和语义信息,并结合语言学知识,有效识别新词。具体而言,算法主要包括以下步骤:
语料预处理: 对原始语料进行分词、去除停用词等操作,构建干净的文本数据集。
候选词提取: 基于统计指标,例如词频、互信息、左右熵等,从预处理后的语料中提取潜在的新词。
特征表示学习: 利用词向量、深度学习等技术,学习候选词的语义特征表示。
新词判定: 构建分类模型,根据候选词的特征表示,判断其是否为新词。
该算法充分利用大规模语料的优势,能够自动学习丰富的语言知识,有效提高新词发现的效率和准确率。
算法与数据结构
2
2024-05-25
改进K-近邻法的文本分类算法分析与优化
文本自动分类技术是数据挖掘的重要分支,K-近邻法作为常见的文本分类算法之一,其存在一些局限性。基于对K-近邻法的分析,针对其不足提出了改进方案,在保证判定函数条件的前提下,优化了算法,避免了K值的搜索过程,从而降低了计算复杂性并提升了效率。实验证明,改进后的K-近邻法在文本分类任务中具有显著的效果。
数据挖掘
2
2024-08-03