MATLAB SIR模型代码pMCMC-SIR是Rasmussen, DA, Ratmann, O., & Koelle, K. (2011)中使用的粒子MCMC算法的R版本。提供了从MATLAB到R的代码转换,保留了原始代码和模拟数据的结构。要运行SIR流行病学模型的粒子MCMC算法,请在R终端中输入以下命令:source('main_Inference.R')。
MATLAB SIR模型代码的pMCMC-SIR算法R版本实现
相关推荐
Matlab代码对随机SIR网络的影响随机SIR网络模型
此存储库包含Matlab代码,用于描述无标度随机网络上的随机SIR动力学。该模型的详细描述可以在Matia Sensi合著的论文“网络属性和流行病参数如何影响无标度随机网络上的随机SIR动态”中找到。我们欢迎您提供反馈意见和建议。如果您发现错误或有任何问题,请通过以下邮箱联系我们:sara.sottile@unitn.it, ozan.kah@gmail.com, mattia.sensi@unitn.it。通过配置模型,您可以选择幂律分布的指数来生成无标度网络,并决定传播速度、感染节点的初始数量及其位置(如中心、平均程度、外围或随机)。运行程序的方法是键入:./configuration.py [FLAG] [P]。设置参数的方法是:N [节点数量] alpha [幂律指数] number_of_infected [起始时的感染数量] end_time [最大时间]
Matlab
2
2024-07-13
基于复杂网络的SIR传播模型(Matlab)
这个Matlab代码基于小世界网络实现,是经典的SIR传播模型。模型中,个体状态经历S(易感)、I(感染)、R(康复)三种阶段。康复者具有免疫力,不再感染。尽管代码实现基本功能,其简洁性有待提高,适合学习SIR传播模型的代码设计思路。
算法与数据结构
1
2024-07-18
利用MATLAB Guide模块动态仿真SIR模型
MATLAB Guide模块提供了一种动态仿真SIR模型的方法,用户可以通过调整各种参数来观察不同情况下的仿真结果,从而更清楚地理解和展示SIR模型的特性。
Matlab
2
2024-07-25
基于SIR模型分析某市新冠疫情趋势的MATLAB实现
在本项目中,我们将对某市新型冠状病毒疫情进行分析,采用SIR模型对数据进行建模。数据时间范围为2020年6月至12月,代码和数据集已包含。该分析通过数学模型帮助理解疫情趋势,并为疫情防控提供参考。
Matlab
0
2024-11-03
R语言实现DPGMMDirichlet过程高斯混合模型的R代码
这些R代码帮助用户理解贝叶斯非参数模型,特别是Dirichlet过程高斯混合模型(DPGMM)。它们是从Matlab代码转换而来,以便更好地在R环境中使用。
Matlab
2
2024-07-16
MATLAB实现TVP-VAR模型的代码
这是一个MATLAB实现的TVP-VAR模型代码,用户可以根据需要修改变量和数据,以便直接运行。
算法与数据结构
2
2024-07-16
统计代码下载MATLAB ARMA模型的实现
这是一个MATLAB时间序列代码的简介,介绍了如何使用Estimate_AR.m来估计AR(p)模型。AR(p)模型可以表示为$$ y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + ... + \phi_p y_{t-p} + \epsilon_t $$ Estimate_AR.m 函数的输入包括:muexist(布尔值,TRUE表示y的期望不为零),p(AR模型的参数),以及按时间排序的数据列向量y。输出为参数估计 phihat 和误差方差估计 sigma2hat。该函数使用OLS方法进行参数估计。
Matlab
0
2024-08-17
使用Matlab实现HMM模型的代码示例
在这个示例中,我们展示了如何使用Matlab编写和运行HMM模型的代码。示例数据文件包括1.dat和2.dat,这些文件包含了排放量和状态的数据。我们在train.m中提供了代码,用于加载和处理这些数据,并用最大似然估计初始化模型。通过调整初始状态分布,我们确保模型的准确性。此外,我们还展示了如何通过javac和java调用Matlab控制包matlabcontrol-4.1.0.jar来运行Hmm.java文件。
Matlab
0
2024-09-27
MATLAB实现的A星算法,官方版本
此MATLAB代码是A星算法的官方实现,代码结构清晰,适合学习。提供了标准的Astar算法实现。
Matlab
3
2024-05-26