这是一个简便迅速的工具,用于在MATLAB中训练各种层数的前馈神经网络。
快速神经网络训练工具的MATLAB开发
相关推荐
神经网络训练原理与应用
神经网络训练原理- 终止条件:获得使训练集中样本分类正确的权重值。- 训练步骤:- 随机初始化权重。- 输入样本,计算输入值线性总和。- 通过激励函数计算输出值。- 计算误差,修正权重和阈值。
数据挖掘
5
2024-05-01
BP神经网络训练详解与实例解析
3. 神经网络的训练
3.1 训练BP网络
训练BP网络的过程是通过应用误差反传原理不断调整网络权值,使得网络模型输出值与已知的训练样本输出值之间的误差平方和达到最小或小于某一期望值。虽然理论上已证明:具有1个隐层(采用Sigmoid转换函数)的BP网络能够实现对任意函数的任意逼近,但迄今为止仍没有构造性结论说明如何在给定有限个训练样本的情况下,设计一个合理的BP网络模型,并通过学习达到满意的逼近效果。因此,建立合理的BP神经网络模型的过程,在国外被称为“艺术创造的过程”,是一个复杂而又十分烦琐的挑战。
算法与数据结构
0
2024-10-31
RBF神经网络训练MATLAB源程序代码.zip
本压缩包包含RBF神经网络的训练MATLAB源程序代码,可以帮助用户更方便地理解和实现RBF神经网络模型的训练过程。该代码示例适用于机器学习与神经网络领域,提供了详细的实现步骤和参数设置,便于调试和学习。
Matlab
0
2024-11-06
支持向量神经网络(SVNN)基于SVM原理的MLP神经网络训练新方法
这段代码介绍了一种名为支持向量神经网络(SVNN)的新型MLP神经网络训练方法,与传统的SVM相似。它由O. Ludwig在其博士论文中提出,重点是快速模式识别的非参数方法,毕业于科英布拉大学。输入参数包括一个N x L矩阵,代表L个N元素的输入向量,以及一个目标类别的行向量y,其元素为-1或1。该算法类似于SVM,具有惩罚参数C可在代码中设置。SVNN输出MLP模拟器“sim_NN.m”的参数W1、W2、b1、b2,需要测试数据矩阵和目标向量(如果目标不可用,则提供空向量)。代码优化用于四核处理器,适合在多核系统中运行。
Matlab
0
2024-09-28
利用已配置的神经网络进行分类和训练(Matlab实现)
Matlab程序演示如何利用预设的神经网络进行分类和训练,适合神经网络初学者学习参考。本程序分享学习经验。
Matlab
4
2024-07-22
深度学习中的神经网络训练技术及其应用
神经网络的训练涉及多个步骤,包括初始化权重、逐步输入训练样本、计算神经元输出值并修正误差。技术进步推动了数据挖掘和应用领域中神经网络训练方法的革新。
算法与数据结构
3
2024-07-16
MATLAB的神经网络实现
MATLAB提供了强大的工具和函数,用于实现反向传播神经网络(BP神经网络)。这些工具和函数使得在MATLAB环境中轻松地搭建和训练BP神经网络成为可能。使用MATLAB,可以有效地进行神经网络的参数调整和性能优化,以适应不同的数据集和应用场景。
Matlab
1
2024-07-23
Kohnen竞争学习神经网络MATLAB开发
执行M文件,这是Kohnen竞争学习神经网络的学习算法。
Matlab
0
2024-08-22
神经网络 MATLAB 程序
神经网络识别,可识别三种类别,使用四种特征。可更改程序以识别更多类别。
算法与数据结构
5
2024-04-29