直方图增强涵盖了动态、全局和局部直方图增强,附带Matlab源码用于绘制图像直方图。其中动态直方图增强通过A dynamic histogram equalization for image contrast enhancement进行,仅考虑x=0的情况,并详细注释了图像的反滤波、去散焦和运动模糊处理。
直方图增强反滤波方法
相关推荐
用于增强部分曲线结构的步进滤波和多项式滤波方法
此代码实现了步进滤波和多项式滤波方法,用于增强部分曲线结构。该方法适用于地球物理图像,特别是用于识别地下建筑结构的线性模式。结合了旋转和尺度不变滤波器以及像素标记方法,有效增强和检测二维灰度图像中的大多数线结构。代码提供了旋转和尺度不变滤波器的实现示例。详细用法请参阅www.csd.uoc.gr/~cpanag中的runFiltering.m。
Matlab
2
2024-07-28
Matlab中的冲击滤波简单图像增强和锐化方法
冲击滤波器的核心思想是在局部区域应用膨胀或侵蚀过程,取决于像素是否属于最大值或最小值的影响区域。基于Kramer-Bruckner的拉普拉斯算子集合{-1, 0, +1},使用符号函数来决定膨胀和侵蚀的优先顺序。这种方法产生的效果是对输入图像进行增强和锐化。参考文献包括Guichard和Morel在尺度空间和形态学中的研究,以及Aubert和Kornprobst在图像处理中的数学问题的探讨。
Matlab
2
2024-07-17
图像增强技术直方图均衡化的实验探索
在多媒体技术的实验中,直方图均衡化是一种常用的图像增强技术,通过调整图像的灰度分布来提升视觉效果。在Matlab环境下,研究人员可以利用该技术改善图像对比度和细节,从而更好地满足各种应用的需求。
Matlab
2
2024-07-29
图像增强技术直方图均衡化的Matlab实现
图像增强技术中,直方图均衡化是一种常用方法,特别适用于提升图像对比度。以下是使用Matlab实现直方图均衡化的代码示例。
Matlab
0
2024-09-26
增强型粒子滤波算法
本资源提供了一种改进的粒子滤波算法,着重于识别和利用高质量粒子。算法根据权重对粒子进行排序,舍弃低权重粒子(概率分布函数高于0.5)。高权重粒子则根据其权重进行采样。在权重与概率分布函数介于0.5之间的粒子上进行均匀采样,以捕捉大多数粒子的趋势,实现更快速、更精确的目标跟踪,并降低目标丢失的可能性。
算法与数据结构
2
2024-05-20
灰度直方图图像增强技术概述与Matlab仿真案例
灰度直方图是图像处理中一种重要的分析工具,用于展示图像中各个灰度级的分布情况。通过调整直方图可以实现图像的增强,提升视觉效果和信息量。Matlab提供了丰富的工具箱,能够方便地进行灰度直方图的仿真和分析。
Matlab
0
2024-08-10
直方图均衡图像对比度增强的MATLAB开发
应用MATLAB的histeq函数可有效提升图像对比度。
Matlab
0
2024-09-23
基于同态滤波的图像增强算法
基于同态滤波算法,提出了一种新的图像增强方法。该方法通过利用图像的频率信息,将图像分为低频和高频成分。对低频成分应用同态滤波,提升图像对比度;对高频成分不进行处理,保持图像细节。实验结果表明,该方法能够有效提高图像质量,增强图像对比度,同时保留图像细节。
Matlab
2
2024-05-31
直方图均衡简易matlab实现方法
这是一个简易的matlab实现,演示了如何在没有matlab函数的情况下进行直方图均衡。
Matlab
2
2024-07-31