这段代码展示了k-means、mean-shift和normalized-cut分割方法的比较测试。其中,仅使用颜色的k-means分割,颜色加空间的k-means分割,仅使用颜色的均值偏移分割,颜色加空间的均值偏移分割以及使用颜色和空间数据的normalized-cut分割。k-means的参数是簇数“K”,mean-shift的参数是平均位移带宽“bw”,normalized-cut的参数包括颜色相似度“SI”、空间相似度“SX”、空间阈值“r”和保持分区的最小Ncut值“sNcut”等。对于normalized-cut,使用了Naotoshi Seo的经过修改的实现。
k-means、mean-shift和normalized-cut分割的MATLAB开发比较
相关推荐
matlab中的K-means算法优化
通过Matlab矩阵操作加速的LITEKMEANS K-means聚类算法。
Matlab
9
2024-07-22
K-Means 聚类程序
包含 K-Means 算法程序和所需数据集,解压缩后即可直接运行。请调整数据集文件路径以匹配本地位置。
算法与数据结构
13
2024-05-01
K-means聚类算法的MATLAB实现
K-means是一种传统的计算K均值的聚类算法,因其计算复杂度低,而成为应用最为普遍的一种聚类方法。该算法通过将数据分为K个簇,使得每个簇内的数据点尽可能相似,而簇间的数据点差异尽可能大。K-means算法的核心思想是迭代地调整每个簇的中心(即质心),直到聚类结果收敛。
Matlab
19
2024-11-05
K-Means与C-Means算法的MATLAB仿真
将介绍在模式识别中使用K均值和C均值算法的MATLAB仿真。通过仿真,用户可以深入理解这两种算法的工作原理和应用。
Matlab
6
2024-11-04
使用Matlab开发分类k-means中的距离矩阵
我们利用Matlab构建了一个距离矩阵,用于观察不同类别之间的距离变化,这有助于确保对未知数据的正确分类。
Matlab
14
2024-08-12
Matlab实现K-means聚类算法
K-means聚类算法是一种常用的无监督学习方法,适用于数据分群和模式识别。在Matlab中实现K-means算法能够有效处理数据集,并生成聚类中心。通过迭代更新聚类中心和重新分配数据点,算法能够优化聚类结果。
Matlab
12
2024-08-22
MATLAB 中 K-Means 聚类算法的实现
本指南提供了 MATLAB 中 K-Means 聚类算法的详细实现,无需更改参数即可直接使用,同时提供了参数更改选项。
算法与数据结构
11
2024-05-30
详解k-means聚类算法
k-means聚类算法是一种常用的数据分析技术,特别是在大数据处理中具有显著优势。深入解析了k-means算法及其基于mapreduce的实现。
Hadoop
14
2024-09-14
K-means聚类算法实现
K-means 的聚类逻辑蛮清晰的,主要靠计算“谁离谁近”,把数据点分到最近的中心里。你要是手上有一堆样本,想看看有没有分组规律,用它还挺合适。孤立点也能得比较稳,结果还挺有参考价值。
K-means的实现过程不算复杂,核心就两个步骤:先随机选中心,不停更新,直到不再变。嗯,像在调频收音机,调到信号位置为止。要注意初始中心点选得不好,聚类效果就偏了。
如果你是用Python写的,可以直接撸个小脚本试试,比如下面这样:
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3)
kmeans.fit(data)
别的语言也有,
数据挖掘
0
2025-07-01