这是一个MATLAB脚本示例,用于加载数据、绘制ROC曲线,并计算逻辑回归、支持向量机、朴素贝叶斯和分类树四种不同分类算法的AUC。详细用法请参考MathWorks文档:https://uk.mathworks.com/help/stats/perfcurve.html。
MATLAB脚本示例比较不同分类算法的ROC曲线及AUC计算
相关推荐
设置三种不同分类模型
使用线性内核和标准化
使用线性内核和L2正则化
使用多项式内核和标准化
算法与数据结构
3
2024-05-01
MATLAB中聚类分类算法中不同的距离计算方式
在进行数据挖掘和机器学习的过程中,聚类是一种常见的无监督学习方法,其主要目标是将相似的数据点分组在一起形成簇。聚类算法的效果很大程度上取决于所采用的距离度量方式,因为距离度量决定了数据点之间的相似程度。MATLAB作为一种强大的科学计算软件,提供了多种距离计算方法来支持不同的聚类需求。详细介绍了MATLAB中几种常用的聚类算法距离计算方法,包括欧氏距离、标准欧氏距离、马氏距离、绝对值距离和闵科夫斯基距离。
算法与数据结构
0
2024-09-16
AUC比较p值相同案例中两个AUC的Matlab开发比较
相同案例中两个AUC的比较结果展示相反效果,作者推荐使用NetReclassificationImprovement.m和IntegratedDiscriminationImprovement.m进行进一步分析。使用方法:[pvalue Wold Wnew] = pauc(predOld, predNew, outcome) (c) Louis Mayaud, 2011 (louis.mayaud@gmail.com)。详细信息请参考马奥等人的研究:“低血压发作期间的动态数据改善脓毒症和低血压患者的死亡率预测*。”重症监护医学41.4(2013):954-962。
Matlab
0
2024-08-26
分类算法比较
随着数据量的激增,数据挖掘技术应运而生。分类作为数据挖掘中关键任务,有助于发现数据规律。本研究利用开源工具Weka对比不同分类算法的性能,帮助新手了解算法特点和掌握工具使用。分类算法在分类问题中发挥重要作用,是数据挖掘、机器学习和模式识别的重要领域。
数据挖掘
6
2024-05-23
净重分类优化将NRI引入替代ROC曲线下面积的方法
当前,尽管已经提出多种方法来解决诊断测试中的歧视性问题,但接收者操作特性曲线(ROC)下面积(AUC)仍是主流的评估标准。研究人员通常评估新生物标志物对AUC的影响。然而,对于已经包含标准风险因素并具有良好区分度模型,要获得更大AUC的有意义增加,新标志需要显著且独立地与结果相关。彭西纳等人提出了“净重分类改进”(NRI)的新评估方法,侧重于重新分类表的构建及正确移动的量化。考虑到两个共享所有风险因素的模型对感兴趣事件的预测概率,NRI可用于评估新标志的增值。
Matlab
2
2024-07-16
如何生成ROC曲线-Weka详细指南
如何生成ROC曲线的样本测试概率阈值 >= ROC曲线:测试样本属于正类的概率TPR FPR
数据挖掘
0
2024-09-21
web数据挖掘实验中的ROC曲线展示
ROC曲线(接收器操作特征曲线)是一种图形化方法,用于平衡分类模型的真正率和假正率。随着技术进步,ROC曲线在web数据挖掘实验中显示其重要性。
数据挖掘
0
2024-08-08
分布估计算法详解及Matlab实现示例
详细介绍了分布估计算法的核心原理,并附带一个基于Matlab的实例代码。
Matlab
0
2024-09-26
双曲线二次型的计算示例 - MATLAB教程
双曲线二次型的计算示例基于矩阵A=[1,-4;-4,-5],利用特征值分解[eigenvalue, eigenvector]=eig(A),或正交化方法R=orth(A),获取特征向量e,并将其排列成正交矩阵。其中lambda表示对角化后的矩阵D,从而得到标准化的二次型方程。
Matlab
0
2024-09-30