利用matlab编写灰色GM(1,1)模型的运算程序。该模型基于灰色系统理论,通过微分方程求解系统常数,将离散数据转化为连续数据序列,从而减弱原始时间序列的随机性。
matlab中灰色模型GM(1,1)的运算代码
相关推荐
GM(1,1)模型matlab程序的下载及学习资源
可以下载学习GM(1,1)模型的matlab程序,提供了相关学习资料。
Matlab
1
2024-07-30
MATLAB APP:灰色预测 G(1,1) 算法工具包
基于 MATLAB APP 设计的灰色预测 G(1,1) 算法工具包,专为数据预测而打造。无需更改或调试程序,直接导入数据即可使用。
该工具包包含:
算法理论介绍
算法源代码
实例数据
使用教程
广泛应用于数据分析预测、数学建模竞赛(如全国大学生数学建模大赛、美国大学生数学建模大赛)等领域。
统计分析
5
2024-05-19
matlabG(1,1)预测仿真模型的优化
G(1,1)预测的进一步优化
Matlab
2
2024-07-30
MATLAB中冰川流动模型的代码Flowline_v1
这是Wolovick和Moore于2018年使用的冰川流动模型代码,用于研究冰川工程。Flowline_v1是主要脚本,包含广泛的注释和运行说明。另外,FlowlineBundler_v1可用于在参数空间内运行多个模型实例。模型行为由脚本中的参数和输入文件中的初始条件与边界条件控制。在需要时间或空间变化的边界条件时,应将参数设置为\"file\"。通过取消注释顶部的函数定义行,可以在FlowlineBundler中切换到函数模式。
Matlab
0
2024-09-26
GM11数学模型的Matlab代码
这是我编写的GM11预测数学模型的Matlab代码。
Matlab
3
2024-08-01
GM(1n)matlab代码-WeilerEtAl08-LaminarCortex 基于Weiler等人2008年数据的皮层模型
GM(1 n)matlab代码运动皮层兴奋网络自上而下的层状组织基于以下数据的模型:Weiler N、Wood L、Yu J、Solla SA、Shepherd GM (2008)。Nat Neurosci 11:360-6 Python实现到目前为止,的一个版本是,以便于与正在开发的其他Python脚本集成,以使用来自Weiler等人,2008年论文的数据。这可以运行(安装Numpy后):cd Python python laminarWsimulation.py y轴箱0-8表示归一化皮层深度(yfract)。Bin 0表示标准化的皮层深度介于0.1和0.2之间;bin 1介于0.2和0.3之间;等等。每个bin代表~140um的皮质深度,并不对应于经典层边界。NeuroML实现已经创建了一组脚本,以使用此连接数据生成简单的(集成和火或单隔室HH细胞模型)皮质网络。例如,请参见用于生成.请参阅生成的示例。使用的数据是来自上述Python代码(基于原始Matlab文件)的连接矩阵。如下图
Matlab
0
2024-08-09
生成(1,-1)的随机矩阵A的简化Matlab代码
在Matlab开发中,为生成(1,-1)的随机矩阵A,可以优化代码以避免循环。
Matlab
2
2024-07-31
灰色模型matlab原代码在Tensorflow2.0+中实现的ESRGAN
灰色模型matlab原代码在Tensorflow 2.0+中实现的ESRGAN(增强的超分辨率生成对抗网络,在ECCV 2018中发布)。这是一个非正式的实现。 ESRGAN引入了不进行批量归一化的残差残差块(RRDB)作为基本网络构建单元,采用了相对论GAN的思想,即让鉴别器预测相对真实性,并通过使用激活前的功能来感知损失。由于这些改进,与SRGAN相比,拟议的ESRGAN具有始终如一的更好的视觉质量和更逼真的自然纹理,并在PIRM2018-SR挑战赛中获得第一名。
Matlab
0
2024-08-11
灰色模型Matlab原始代码-SC-CNNSC-CNN
在这个项目中,我们试图实现灰色模型Matlab原始代码SC-CNN。请注意,代码正在更新中,并未完全完成。当前阶段已经实现了SC-CNN的第一部分。该代码使用的数据集与文中提到的数据集相同,同时也适用于其他数据集的训练。我们计划对代码进行进一步更新以解决已知问题,但目前仅使用主要数据集进行开发。请注意,无需手动下载数据集,所有数据处理均由代码完成。该代码基于Pytorch编写,支持在CPU或GPU上运行,也可以在多个GPU上并行运行。详细的运行说明可以在代码中找到。
Matlab
0
2024-08-12