本存储库由Michael Paluszek和Stephanie Thomas合著的书籍《MATLAB机器学习》(Apress,2016)提供支持。您可以通过点击绿色按钮下载zip格式文件,或使用Git克隆存储库到本地。版本v1.0对应书籍的已出版代码,未经更正或更新。如需贡献,请参阅Contributing.md文件获取详细信息。
MATLAB机器学习源代码下载 Michael Paluszek与Stephanie Thomas的学习资源
相关推荐
ScalaMl:探索机器学习算法的源代码资源
ScalaMl: 面向机器学习的 Scala
版本 0.99.1
© Patrick Nicolas,版权所有,2013-2016
概述
ScalaMl 的源代码为软件开发人员提供了一个关于机器学习算法差异的广泛视角。它面向具备一定 Scala 编程语言基础和基本统计知识的读者,并不要求读者具备数据挖掘和机器学习的经验。
源代码指南
源代码使用指南在 SourceCodeGuide.html 文档中进行详细说明。
示例应用
代码示例主要与投资组合管理和交易策略相关。
深入学习
对于对数学或库中实现的技术感兴趣的读者,建议参考以下书籍:
“机器学习:概率论” K. Murphy-麻省理工学院出版社-2012
“统计学习的要素” T. Hastie,R.Tibshirani,J.Friedman-施普林出版社
数据挖掘
4
2024-05-19
机器学习:课件、数据与代码资源
作为计算机科学与信号信息处理领域的热门研究方向,机器学习在数据挖掘、大数据分析、视频技术、音频技术以及智能机器人技术等多个领域扮演着关键核心与支撑技术的关键角色。本资源提供的课件与代码涵盖了学生需要了解的主流机器学习理论、方法及算法,并结合应用范例帮助学生掌握监督学习、非监督学习、统计学习、计算学习以及贝叶斯学习等基本学习理论、模型算法及应用。
数据挖掘
2
2024-05-27
机器学习多种人工智能神经网络模型MATLAB源代码资源下载
机器学习领域吸引力不减,过去几十年取得显著进展。人工神经网络是其重要组成部分,已广泛应用于解决各类问题。MATLAB提供了近20种不同类型的人工智能神经网络模型,可用于图像识别、语音处理和自然语言任务。随着技术和工具的进步,机器学习领域的发展潜力巨大。
算法与数据结构
0
2024-08-24
Spark机器学习资源下载
Spark作为大数据处理领域的主要框架,以其高效且易用的特点受到开发者的青睐。在机器学习领域,Spark通过其MLlib库提供了广泛的算法支持,使大规模数据上的模型训练和预测变得更加便捷。本资源“MachineLearningSpark.zip”专为学习者提供,帮助理解和应用Spark进行机器学习。MLlib库涵盖了监督学习(如逻辑回归、决策树、随机森林等)和无监督学习(如K-Means、PCA等)算法,基于分布式计算处理PB级别数据。通过DataFrame和RDD,Spark提供了高效的数据处理和并行计算能力。资源包含示例代码、数据集、说明文档和机器学习管道示例,帮助学习者掌握数据加载、特征工程、模型训练、评估等关键概念。
spark
0
2024-10-17
Matlab集成C代码的机器学习资源指南
这篇文章列出了一些关于机器学习、数据科学和深度学习的顶级库、框架和工具,为初学者提供指南。虽然大多数资源集中在Python上,但也包含其他语言的工具。Apache Spark MLib是其中之一,适用于与Python和R的互操作。
Matlab
0
2024-08-28
matlab代码无法执行问题-自制机器学习资源下载
matlab代码无法执行自制机器学习,针对本存储库的Octave / MatLab版本,请进行检查。这个存储库提供了使用Python实现的流行机器学习算法示例,并详细解释数学原理。每种算法都包含交互式的Jupyter Notebook演示,让您可以在浏览器中立即查看结果、图表和预测,以及配置算法和训练数据。大多数情况下,解释都基于Andrew Ng的理论。这个存储库的目标不是使用第三方库实现机器学习算法,而是从头开始编写这些算法,以更好地理解每个算法背后的数学原理。因此,所有这些算法的实现被称为“自制”,而不是为生产环境使用。
Matlab
0
2024-10-01
机器学习资源
感谢大牛整理的机器学习资源:https://github.com/Flowerowl/Big_Data_Resources#大数据-数据挖掘
数据挖掘
7
2024-05-01
深度学习经典论文与Matlab代码资源下载
本资源包含深度学习领域的经典论文与对应的Matlab代码。这些论文包括:1. Hinton的《深度信念网络的快速学习算法》;2. Bengio的《学习AI的深层架构》;3. Hinton的《训练受限玻尔兹曼机的实用指南》等。附带我个人的笔记,帮助读者更好地理解内容。代码涵盖了DBN、NN、CNN等经典的深度学习工具(Matlab版本)。
Matlab
2
2024-07-18
Matlab与Simulink学习资源下载
这份资源以PPT形式呈现,专为初学者设计,涵盖电力系统和电力电子simulink的基础知识。
Matlab
0
2024-08-14