利用四核ARM S5P4418芯片与CMOS图像传感器OV7725相结合,开发了一种新的地下管线检测系统。该系统通过摄像机捕获激光光斑在成像屏坐标的变化来定位地下管线的位置与弯曲变化。研究采用matlab calibration toolbox对摄像机进行精确标定与矫正,标定误差控制在0.16像素内。此外,还对图像进行了灰度转换、中值滤波与阈值分割预处理,并应用灰度重心法准确获取激光光斑的中心位置信息。这一简单有效的方法显著降低了工作量与检测成本。
基于ARM与CMOS技术的地下管线检测新方法研究
相关推荐
基于网络流量分形特性的DDoS攻击检测新方法研究(2009年)
分析了传统DDoS攻击检测方法的局限性,并提出了基于网络流量分形特性的两种新型异常检测方法。通过对网络流量的分形参数Hurst和Holder及其时变函数进行深入分析,研究了网络流量异常的自相似性和多重分形性变化。研究结果表明,这种基于统计分析的新方法能够有效检测和防范DDoS攻击。
统计分析
0
2024-09-13
图像检索新方法结合NMF与Isomap的研究
非负矩阵分解(NMF)是一种局部特征提取方法,能勾勒相关图像在基矩阵空间的分布。为解决NMF未考虑数据内在几何结构的限制,提出基于NMF与全局非线性降维方法Isomap相结合的新方法。Isomap能有效发现数据内在结构与相关性,实现高维数据的可视化降维。实验显示,该方法在图像检索中能更准确地获取信息,提升检索准确性。
数据挖掘
0
2024-09-13
研究报告领域本体构建的新方法
为了解决文本数据挖掘等尚未成熟的领域中本体构建的挑战,我们首先创建了领域本体的基本概念词集。利用样本库优化这些基本概念,并构建它们的上下文关系,筛选出相关的名词,并且设计了一种算法来确认同义词、近义词和反义词。这一方法已经被证实在实践中具有可行性。
数据挖掘
0
2024-08-15
基于数据挖掘的模块评估新方法
随着软件工程的发展,评估软件产品变得日益重要。传统的主观经验和有限数据集评估方法准确性有限。为解决这一问题,尹云飞等人提出了一种创新的基于数据挖掘的模块评估新方法,采用模糊聚类技术提高评估精确度和有效性。
数据挖掘
0
2024-09-24
基于粗糙集属性约简的图像隐藏信息检测新方法(2008)
统计分析方法是图像隐藏信息检测中常用的手段,相较于特定隐写分析,其更为灵活,能够快速适应新的或未知的隐写算法。为解决高维特征属性问题,采用粗糙集属性约简技术,有效降低数据规模。实验结果显示,该方法在不影响分类精度的情况下显著提升了检测速度。
统计分析
0
2024-08-30
Matlab代码实现图像反转检测欺诈行为的新方法
2019年8月至2019年10月间,我在卡罗林斯卡研究所Ampatzis实验室实习,开发了一种新的方法来跟踪图像反转的欺诈行为。这个存储库包含了分析收集数据的多种方法。特别是针对斑马鱼的暗沙行为,我们测试了来自两个不同组的七个个体:对照组和转基因组。转基因品系表现出Purkinge细胞的损伤,因为它们编码了肉毒杆菌毒素。我们使用Matlab进行数据分析,测试了相同处理的七条鱼。测试在装有500毫升水的黑色墙壁罐中进行,视频修剪和处理过程详细记录于此。
Matlab
0
2024-08-17
数据挖掘算法研究基于非线性相关的创新方法
现有的关联规则挖掘算法专注于频繁集搜索,并依赖于预设的支持度和置信度,存在较大的随机性和控制困难。此外,这些规则未能全面反映数据整体的相关性。为了克服这些问题,引入了非线性相关的概念,用于各种相关类型规则的挖掘,无需人为设定参数,显著提高了规则发现的效率。
数据挖掘
3
2024-07-17
方形邻域加速离群点检测:一种基于密度的全新方法
方形邻域加速离群点检测:一种基于密度的全新方法
ODBSN算法作为一种快速识别离群点的方法,将DBSCAN算法中的邻域形状改造为方形,并结合了网格算法的优势,从而快速排除密集方形邻域中的非离群点数据。与传统的网格划分方法不同,ODBSN算法采用邻域扩张策略,有效避免了“维灾”问题,提升了算法在高维数据上的适用性。此外,ODBSN算法引入局部偏离指数,不仅可以准确识别离群点,还能量化其偏离程度,为数据分析提供更丰富的信息。理论分析和实验结果均表明,ODBSN算法在处理不同形状分布和密度的数据时表现优异,识别效率显著优于LOF和DBSCAN等传统算法。
数据挖掘
3
2024-05-25
挖掘关联规则的新方法
关联规则挖掘在事务数据库中的应用越来越广泛。单维布尔方法提供了可伸缩的算法,用于挖掘各种关联和相关规则。基于限制的关联挖掘和顺序模式挖掘都是当前研究的重点。
算法与数据结构
1
2024-07-22