Matlab Hill代码RBCNet采用双重深度学习架构,改善生物医学应用程序中的细胞检测任务,提升手动分割和注释的准确性和可重复性。该算法包括U-Net和Faster R-CNN两阶段,分别用于单元群集分割和小型单元对象检测。RBCNet通过单元聚类技术实现区域检测,提高了在稀薄涂片显微镜图像中的精确度和扩展性。