矮猫鼬优化算法(DMO)是一种新兴的全球优化算法,灵感源自非洲草原上矮猫鼬的社会行为模式。该算法通过模拟矮猫鼬群体的合作寻食和防御策略,实现了在复杂优化问题中的应用。详细探讨了DMO算法的核心概念、工作原理及其在实际中的优势。包含了初始化、社会交互、移动策略、更新规则和迭代终止等关键步骤。经典测试函数的应用涵盖了23个测试函数,用于验证和比较算法的性能,包括单峰函数、多模函数以及全局和局部极小值函数。