在WEKA中观察关联规则,以发现项目集之间的联系和依赖关系。
关联规则观察-WEKA教程
相关推荐
Weka关联规则功能解析
Weka关联规则功能解析
在Weka中,关联规则以“L->R”的形式表达,其中L和R分别代表规则的前件和后件。
支持度(support): 指在一个购物篮中同时观察到L和R的概率,用P(L,R)表示。
置信度(conviction): 指购物栏中出现了L时也出会现R的条件概率,用P(R|L)表示。
关联规则的目标是生成支持度和置信度都较高的规则。除了置信度,还可以使用以下指标来衡量规则的关联程度:
Lift: P(L,R)/(P(L)P(R))
Leverage: P(L,R)-P(L)P(R)
Conviction: P(L)P(!R)/P(L,!R)
数据挖掘
9
2024-05-16
Weka关联规则挖掘参数设置实战
Weka关联规则挖掘参数设置实战
任务一:高提升度关联规则
本任务目标是挖掘支持度在10%到100%之间,提升度超过1.5且排名前100的关联规则。参数设置:lowerBoundMinSupport: 0.1upperBoundMinSupport: 1metricType: liftminMetric: 1.5numRules*: 100
任务二:高置信度分类关联规则
本任务目标是挖掘支持度在10%到100%之间,针对“car”属性,置信度超过0.8且排名前100的分类关联规则。参数设置:car: TruemetricType: confidenceminMetric: 0.8numRule
数据挖掘
16
2024-04-29
关联规则和动态关联规则简介
本内容适合于数据挖掘方向的硕士研究生阅读学习,对关联规则与动态关联规则做了简介。
数据挖掘
10
2024-04-30
关联规则挖掘综述
关联规则挖掘该研究概述了关联规则挖掘技术的定义、分类、挖掘方法和模式。分析了关联规则挖掘质量的改善问题和领域应用。
数据挖掘
10
2024-05-19
挖掘多层关联规则
挖掘多层关联规则可找出层次化的关联规则,例如:
牛奶 → 面包 [20%, 60%]
酸奶 → 黄面包 [6%, 50%]
数据挖掘
12
2024-05-25
Apriori关联规则算法
Apriori算法是挖掘关联规则的经典算法,效率较高。本算法对Apriori算法进行了改进,提高了效率。
数据挖掘
9
2024-05-25
关联规则分析简介
关联分析挖掘大数据中相关联系,发现规律和模式,应用于商业决策。如购物篮分析、跨品类推荐、货架布局优化、联合促销等,提升销量、改善用户体验。
数据挖掘
11
2024-05-27
关联规则挖掘——Sequential Patterns
关联规则挖掘和顺序模式挖掘,欢迎深入了解!
数据挖掘
9
2024-05-13
加权负关联规则挖掘
针对传统关联规则挖掘算法不能有效挖掘负关联规则的问题,该研究引入了负关联的理论,并提出了新的算法。
DB2
9
2024-04-30