详细解析了线性判别分析(LDA)与主成分分析(PCA)的特征降维原理与方法,并结合实际分类示例,使用matlab进行了详细演示,展示了如何利用matlab生成散点图。
详解LDA与PCA的特征降维方法及matlab实例演示
相关推荐
PCA与LDA方法的人脸识别matlab实现
这是一份完全可用的人脸识别matlab代码,采用主成分分析(PCA)和线性判别分析(LDA)方法提取特征进行识别。
Matlab
7
2024-08-17
LDA+KNN MATLAB降维与分类实现
压缩包里的lda+knn.zip是我最近翻出来的一个挺实用的资源,适合想在 MATLAB 里搞搞降维加分类的朋友。LDA负责把维度高的数据压缩得更清晰,交给KNN去判断分类。整体流程顺,代码也不复杂,适合学习也适合改成自己的小项目用。
lda_trans.m主要搞定线性变换,把数据从原始空间丢进一个更有辨识度的空间里。前面会先下数据,就是算均值、协方差什么的,用个公式算出投影向量,投影完就能丢给 KNN 用了。
knn_predict.m做的就是 K 最近邻分类,原理简单,谁离得近就跟谁一类。一般我用它来做对比实验挺方便的,直接能跑结果。还有arrDataMat.m估计是做数据预的,simit
Matlab
0
2025-06-18
PCA-LDA原始论文与Matlab实现
PCA和LDA的原始论文与Matlab程序实现。PCA原始论文为文字版,非常见扫描版。
Matlab
16
2024-05-19
MATLAB快速实现SVD截断与PCA降维
在MATLAB开发中,快速SVD和PCA是处理矩阵数据时常用的技术。SVD(奇异值分解)可以将任意矩阵分解为三个矩阵的乘积,其中通过截断方法可以去除不重要的奇异值,达到降维的效果。PCA(主成分分析)则是通过对数据进行协方差矩阵的特征值分解,将数据从高维空间映射到低维空间,同时保留数据的主要信息。
快速SVD实现
对于大规模矩阵,可以通过快速算法进行SVD的截断,以减少计算复杂度。在MATLAB中,svds函数允许指定截断的奇异值个数,快速得到矩阵的低秩近似。
PCA降维方法
在进行PCA时,首先需要对数据进行中心化处理(减去均值),然后计算协方差矩阵并进行特征值分解。利用MATLAB中的ei
Matlab
18
2024-11-06
多元统计分析方法与应用(PCA降维)
多元统计中的降维问题比较常见,通常需要将多个变量转化为少数几个不相关的变量。这样不仅简化了研究问题,信息的丢失也相对较少。主成分(PCA)就是其中一种降维方法,它能够把复杂的多维数据压缩成较少的维度,更好地理解数据结构。因子和对应也是降维的好帮手,常常用于市场研究、社会科学等领域。通过这些方法,能提取出数据中最重要的信息,避免被冗余数据干扰,节省计算成本。如果你刚接触这类,建议从 PCA 开始,比较简单,而且有不少工具和代码库可以直接用。如果你在用统计软件,像Stata、R,或者MATLAB,都能找到对应的实现。比如,这里有一些相关的资源可以参考:1. 主成分:降维利器,适合初学者了解 PCA
统计分析
0
2025-06-25
MATLAB实现PCA光谱降维程序
MATLAB实现的PCA光谱降维程序,专注于光谱数据的降维处理。
算法与数据结构
8
2024-08-08
深入浅出PCA降维:主成分分析原理及实例解析
主成分分析(PCA)
主成分分析是一种强大的降维技术,能够将高维数据集简化,同时保留大部分关键信息。
PCA的工作原理
想象一下,你正在观察一堆散落在平面上的数据点。PCA的目标是找到一个新的坐标系,使得数据在新的坐标轴上的投影能够最大程度地分散开来。
第一步是找到数据变化最大的方向,这个方向被称为第一主成分。接着,找到与第一主成分正交且数据变化次大的方向,这就是第二主成分。
实例解析
假设我们有一组关于房屋面积和价格的数据,我们可以使用PCA将其降维至一维。 首先,将数据标准化,然后计算协方差矩阵。接着,找到协方差矩阵的特征值和特征向量,特征值的大小代表着对应特征向量方向上的数据方
数据挖掘
10
2024-05-19
PCA降维算法实现
PCA 降维方法的代码实现,挺适合数据和机器学习的小伙伴。你可以用它来高维数据,你降低模型复杂度,提升计算效率。其实,PCA 的核心思想是把数据从高维空间映射到低维空间,保留主要特征,去掉噪声。这对图像、数据降维等领域有用。
在 MATLAB 里实现 PCA 也比较简单,流程大致是:先标准化数据,再计算协方差矩阵,求特征值和特征向量,进行数据转换。你可以通过princomp函数轻松完成这些操作。PCA 的优势是降维高效,但对于非线性数据效果不太好,这时候可以尝试其他降维方法,比如ICA或LLE。
如果你有实际的项目需求,这段代码应该能帮到你。别忘了,代码的实现不仅是学习 PCA 的好机会,还能
Matlab
0
2025-06-13
Matlab主成分分析数据降维与特征提取方法
基于 Matlab 的主成分代码,结构清晰,运行稳定,适合数据降维和特征提取场景。适合做图像识别或大规模多维数据的同学参考一下,配套资料也比较丰富,扩展性也强。
统计分析
0
2025-06-30