详细解析了线性判别分析(LDA)与主成分分析(PCA)的特征降维原理与方法,并结合实际分类示例,使用matlab进行了详细演示,展示了如何利用matlab生成散点图。
详解LDA与PCA的特征降维方法及matlab实例演示
相关推荐
MATLAB实现PCA光谱降维程序
MATLAB实现的PCA光谱降维程序,专注于光谱数据的降维处理。
算法与数据结构
0
2024-08-08
MATLAB快速实现SVD截断与PCA降维
在MATLAB开发中,快速SVD和PCA是处理矩阵数据时常用的技术。SVD(奇异值分解)可以将任意矩阵分解为三个矩阵的乘积,其中通过截断方法可以去除不重要的奇异值,达到降维的效果。PCA(主成分分析)则是通过对数据进行协方差矩阵的特征值分解,将数据从高维空间映射到低维空间,同时保留数据的主要信息。
快速SVD实现
对于大规模矩阵,可以通过快速算法进行SVD的截断,以减少计算复杂度。在MATLAB中,svds函数允许指定截断的奇异值个数,快速得到矩阵的低秩近似。
PCA降维方法
在进行PCA时,首先需要对数据进行中心化处理(减去均值),然后计算协方差矩阵并进行特征值分解。利用MATLAB中的eig函数,可以快速得到特征值和特征向量,再根据特征值的大小进行排序和选择主成分。
这些方法可以广泛应用于图像处理、机器学习、数据压缩等领域,帮助快速降维和提取数据特征。
Matlab
0
2024-11-06
PCA与LDA方法的人脸识别matlab实现
这是一份完全可用的人脸识别matlab代码,采用主成分分析(PCA)和线性判别分析(LDA)方法提取特征进行识别。
Matlab
0
2024-08-17
深入浅出PCA降维:主成分分析原理及实例解析
主成分分析(PCA)
主成分分析是一种强大的降维技术,能够将高维数据集简化,同时保留大部分关键信息。
PCA的工作原理
想象一下,你正在观察一堆散落在平面上的数据点。PCA的目标是找到一个新的坐标系,使得数据在新的坐标轴上的投影能够最大程度地分散开来。
第一步是找到数据变化最大的方向,这个方向被称为第一主成分。接着,找到与第一主成分正交且数据变化次大的方向,这就是第二主成分。
实例解析
假设我们有一组关于房屋面积和价格的数据,我们可以使用PCA将其降维至一维。 首先,将数据标准化,然后计算协方差矩阵。接着,找到协方差矩阵的特征值和特征向量,特征值的大小代表着对应特征向量方向上的数据方差。
选择最大特征值对应的特征向量作为第一主成分,将原始数据投影到该特征向量上,就得到了降维后的数据。
PCA的应用
数据可视化: 将高维数据降维至二维或三维,以便于观察数据的分布。
特征提取: 选择最重要的主成分作为新的特征,用于机器学习模型的训练。
噪声去除: 通过忽略方差较小的主成分,可以有效去除数据中的噪声。
数据挖掘
2
2024-05-19
基于Matlab的二维LDA+PCA人脸识别程序
这是一个基于Matlab开发的二维LDA+PCA人脸识别程序,可以直接使用。
Matlab
2
2024-07-23
PCA-LDA原始论文与Matlab实现
PCA和LDA的原始论文与Matlab程序实现。PCA原始论文为文字版,非常见扫描版。
Matlab
3
2024-05-19
MATLAB下CroppedYale人脸数据的降维方法
使用MATLAB编写的代码对CroppedYale人脸数据进行降维,比较了PCA、SVD及MATLAB自带的PCA算法的时间和准确度。分析了中心化对PCA的影响,并对比了PCA与SVD的异同。选取了适当的维度k,并展示了k个特征向量对应的图像。还评估了自行实现的PCA算法与MATLAB自带函数的性能。
Matlab
3
2024-07-21
Matlab实现矩阵特征值与特征向量计算方法详解及实例分析
详细介绍了在Matlab中实现矩阵特征值与特征向量计算的多种方法,包括幂法、反幂法、位移反幂法、雅可比方法、豪斯霍尔德方法、实对称矩阵的三对角化、QR方法以及求根位移QR方法,还涵盖了广义特征值问题的解决方案。文章为数值分析和数值代数领域的研究者提供全面的资源和实验报告分析。
Matlab
0
2024-09-26
探索无监督学习:聚类、降维与特征提取
无监督学习是一类强大的机器学习方法,其核心在于从无标签数据中学习内在结构和模式。常见的无监督学习技术包括:
聚类分析: 将数据点划分为不同的组,使得组内相似度高,组间相似度低。
主成分分析 (PCA): 一种降维技术,通过线性变换将原始数据映射到低维空间,保留数据的主要特征。
稀疏编码与学习: 通过学习一组基向量,将数据表示为这些基向量的稀疏线性组合,从而实现特征提取和降维。
算法与数据结构
1
2024-05-19