凌晨三点,在加州大学洛杉矶分校(UCLA)数学系大楼五楼的一个拥挤小隔间里,只有一只灯泡和一台计算机的屏幕发出光亮。克里斯·麦金利(Chris McKinlay)正在为他的博士论文《大规模数据处理和并行数值方法》跑程序。计算机发出嘎嚓声,他点击打开第二个窗口,检查了一下他在交友网站OkCupid的收件箱。约有4000万美国人使用Match.com、J-Date和e-Harmony等交友网站寻找浪漫恋情,35岁的麦金利就是其中之一。他身材瘦高,头发凌乱,自从九个月前跟前女友分手之后,他就一直都在寻找新恋情,但迄今为止都是徒劳无果。
单身数学家如何利用数据分析找到真爱?
相关推荐
如何选择数据分析图表
大数据可视化分析中,选择合适的图表形式至关重要,能够显著提升你的报告效果。
算法与数据结构
0
2024-08-30
数学建模数据分析资源优化
数学建模的数据分析资料已经被优化,以确保信息的新鲜度和独特性。
MySQL
0
2024-08-05
如何利用数据挖掘技术分析Web网站日志?
Web日志挖掘是指利用数据挖掘技术分析Web服务器记录的用户访问日志数据,以揭示用户访问模式和兴趣爱好等信息。这些信息对于优化网站设计、改进用户体验和个性化推荐至关重要。通过用户聚类和分析频繁访问路径,可以调整页面链接关系,以更好地满足用户需求。同时,统计分析日志数据还能帮助评估站点性能,识别热门页面和访问趋势,为站点管理和决策提供支持。
数据挖掘
3
2024-07-17
美国数学建模竞赛中的数据分析
美国数学建模竞赛(MCM/ICM)每年吸引全球学生参与,提升数学、计算机和团队协作能力。C题通常关注现实世界的复杂问题,要求参赛者利用数学模型分析和解决。美赛C题数据分析涉及各种图表如折线图、柱状图、散点图和饼图,帮助参赛者理解数据分布、趋势和变量关系。数据集包含丰富和复杂的信息,涵盖多维度数据,需要深入挖掘。2018年美赛数据反映了当时的社会、经济和科技问题。资源文件可能包括CSV、Excel或文件,参赛者需进行数据清洗、可视化和统计分析,选择合适数学模型如优化、仿真或机器学习,实现解决方案并解释结果。
算法与数据结构
3
2024-07-16
利用R和Hadoop进行大数据分析
本书致力于探讨如何通过R和Hadoop平台实现可扩展的数据分析操作。适合数据科学家、统计学家、数据架构师和工程师,帮助他们处理和分析大规模信息。
Hadoop
0
2024-08-10
ePhys_packages生理学家神经生理数据分析工具
nigeLab为生理学家提供专业分析工具,简化实验数据处理流程。使用该软件包,您可以轻松地管理实验数据,无需编译(基于Matlab运行),并能与您的工作流程无缝集成。
Matlab
2
2024-07-29
哈工大数学建模数据分析资源
数据分析资料:- 模型建立与优化- 统计建模与分析- 数据挖掘与机器学习- 时序分析与预测
帮助学习和提高数学建模能力
算法与数据结构
2
2024-05-25
哈工大数学建模数据分析流程概述
六、哈工大数学建模数据分析的主要步骤包括:1、选择与聚类分析目的密切相关的变量,确保反映要分类的特征,并在不同研究对象上显示明显的差异。变量之间的相关性不应过高。2、计算相似性是聚类分析的基本概念,反映了研究对象之间的相似程度。聚类分析根据对象之间的相似性进行分类,涵盖多种相似性测度。
算法与数据结构
0
2024-09-22
如何利用数据驱动业务增长
最近几年,随着移动互联网的迅猛发展,大数据概念也愈发炙手可热,许多企业开始重视数据化管理。今天我们来探讨数据化管理的关键要点。首先,需要注意数据化管理中存在的误区:数据量大并不意味着能够有效驱动业务发展,因为数据质量问题可能导致数据无法有效应用于业务决策。例如,企业在数据采集过程中可能遇到模拟器刷量和欺诈行为等“脏数据”,如果没有有效的反作弊机制,这些数据将影响到数据挖掘分析的准确性。此外,规范化和标准化数据上报对确保数据科学管理至关重要。数据与业务紧密关联是评估数据价值的核心指标,因此确保数据与实际业务需求相匹配至关重要。企业在追求数据驱动业务发展时,应认识到解决数据质量和业务对接问题的紧迫性。
数据挖掘
0
2024-08-22