我设计了这个简单的项目,用于比较和评估不同版本的人员重新识别代码是否能产生相似的结果。这些只是评估代码的测试示例。我比较了Python和MATLAB版本的结果。数据包括一个示例案例,其中包含100个查询图像和5332个库图像,以及它们的身份、摄像机和查询画廊距离矩阵。Python版本使用了来自Open-ReID的ranking.py和main.py来计算CMC和mAP分数,而MATLAB版本使用了来自Re-Ranking Person的evaluation.m和compute_AP.m,与Market1501数据集兼容。要运行Python版本,需要安装numpy和scikit-learn,切换到python_version目录并运行python main.py。要运行MATLAB版本,切换到matlab_version目录并运行MATLAB,然后运行main.m。您可以比较两个版本的结果,注意它们在CMC分数上的一致性。