在MATLAB平台上,利用支持向量机算法实现了对印章的提取和检测。
MATLAB平台上的支持向量机印章检测技术
相关推荐
支持向量机人脸检测模型构建
利用Gabor特征提取和支持向量机(SVM)算法构建人脸检测模型,实现人脸识别和定位。
Matlab
11
2024-05-30
优秀的支持向量机MATLAB实现
支持向量机MATLAB代码涵盖了分类和回归功能,非常有效。
Matlab
10
2024-10-01
Python支持向量机实现葡萄酒质量检测
在本项目中,Python_Support_Vector_Machine 的目标是帮助一家葡萄酒分销公司检测低质量的“欺诈”葡萄酒样品。该公司近期遭遇供应商欺骗,将廉价低质葡萄酒作为高品质产品进行销售。通过对不同葡萄酒样品进行化学分析,我们利用支持向量机(SVM)创建机器学习模型,以识别和区分葡萄酒的质量。
项目数据来源于 P. Cortez、A. Cerdeira、F. Almeida、T. Matos 和 J. Reis 的研究,该研究通过理化特性进行数据挖掘,以对葡萄酒喜好进行建模。此数据为我们提供了检测不同品质葡萄酒的理化参数,用以支持模型的训练与测试。
样品数据分析和处理
我们将对提供
数据挖掘
5
2024-10-31
Matlab中支持向量机程序的实现
在Matlab中,有一个支持向量机(SVM)程序,其中包括了两种不同的内核:一种是用C语言编写的OSU-SVM内核,具有更高的执行效率;另一种是Matlab内置的内核。详细使用说明可以在http://see.xidian.edu.cn/faculty/chzheng/bishe/index.htm找到。
Matlab
7
2024-07-31
双支持向量机MATLAB、CVX代码
此项目包含基于CVX的孪生SVM和其对偶问题的MATLAB实现,可用于解决凸优化作业。提供生成和可视化训练及测试数据的代码,并提供了说明图示。
Matlab
12
2024-04-30
探究支持向量机:Matlab编程实战
支持向量机实战:Matlab编程指南
本指南深入探讨支持向量机的核心概念,并提供基于Matlab的编程实现方法,帮助您快速掌握这一强大的机器学习技术。
Matlab
13
2024-05-23
支持向量机源代码
支持向量机(SVM)二分类模型利用间隔最大的线性分类器定义于特征空间上,并以核技巧转化为非线性分类器。SVM学习策略的目标为间隔最大化,可转换为求解凸二次规划或最小化正则化合页损失函数。其学习算法则是求解凸二次规划的最优化算法。
算法与数据结构
10
2024-05-01
基于支持向量机的手写字体辨识技术
基于LIBSVM工具箱和LIBSVM-FarutoUitimate工具箱的Matlab手写数字图片辨识,详细介绍了手写字体识别的方法和步骤。手写字体识别在社会经济中有广泛应用,技术包括神经网络、Bayes判别法等。项目利用300张256*256像素点的手写数字图片,每个数字30张。数据集通过gethub下载。手写字体辨识包含图片预处理、支持向量机建模、测试样本辨识等关键步骤。预处理包括反色和二值化,以及区域截取和图像转化。支持向量机使用RBF核函数和遗传算法参数寻优,训练集识别率达到100%。测试样本辨识率为93.3333%,具体错误分析为1->7, 9->7。技术应用领域包括自动化办公、智能
算法与数据结构
12
2024-07-23
数据挖掘技术中支持向量机的资源概述
我从学校图书馆和在线资源中收集的资料,研究支持向量机在数据挖掘技术中的应用。
数据挖掘
5
2024-08-03