Spark作为一种新型的数据库形式,综合了以往各类数据库的优点,经过精心研制而成。
大数据视Spark
相关推荐
Apache Spark大数据入门
这本书对Spark有深入的讲解,同时也包括databricks公司推荐的官方电子书《A-Gentle-Introduction-to-Apache-Spark》。备注:共有9个PDF文件,均为英文版。建议阅读,理解起来并不难!
spark
3
2024-07-12
大数据Spark入门宝典
这两项是关键。
spark
3
2024-07-12
Spark大数据入门与实战
本课程包含Spark大数据全套知识体系,从基础概念讲解到实战案例演示,为你全面掌握Spark提供完整学习路径。
spark
4
2024-04-30
Spark:大数据计算的利刃
Spark,如同Hadoop生态系统中的MapReduce、Hive和Storm,是一种通用的 大数据计算框架。它集成了多种计算框架:Spark Core用于离线计算,Spark SQL用于交互式查询,Spark Streaming用于实时流式计算,Spark MLlib用于机器学习,Spark GraphX用于图计算,涵盖了大数据领域的各种计算需求。
Spark专注于大数据的计算,而Hadoop则更侧重于大数据的存储(例如HDFS、Hive、HBase)以及资源调度(Yarn)。 Spark与Hadoop的结合,被视为大数据领域最具潜力和前景的组合。
spark
6
2024-05-12
Spark大数据习题初体验
首次Spark习题,助你开启大数据学习之旅。
Hbase
4
2024-05-12
Spark大数据内核天机解密
Spark大数据内核天机解密丁立清
spark
3
2024-05-12
Spark大数据处理技术
本书由夏俊鸾、黄洁、程浩等专家学者共同编写,深入浅出地讲解了Spark大数据处理技术。作为一本经典的入门教材,本书内容全面,涵盖了Spark生态系统的核心概念、架构原理以及实际应用案例,为读者学习和掌握大数据处理技术提供了系统化的指导。
spark
3
2024-05-29
大数据Spark实战视频课程
本大数据Spark实战视频培训课程包括Spark虚拟机安装、表配置、平台搭建、Scala入门、集群通信、任务调度、持久化等实用内容。Spark是由加州大学伯克利分校AMP实验室开源的通用并行框架,与Hadoop MapReduce相比,Spark能够将中间输出结果保存在内存中,无需频繁读写HDFS,因此更适用于数据挖掘和机器学习等迭代算法。
数据挖掘
2
2024-07-28
Spark:大数据处理利器
Spark:大数据处理的瑞士军刀
Spark,源自加州大学伯克利分校AMP实验室,是一个通用的开源分布式计算框架。它以其多功能性著称,支持多种计算范式,包括:
内存计算:Spark利用内存进行计算,显著提高了迭代算法和交互式数据分析的速度。
多迭代批量处理:Spark擅长处理需要多次迭代的批量数据,例如机器学习算法。
即席查询:Spark可以对大规模数据集进行快速查询,满足实时数据分析的需求。
流处理:Spark Streaming 能够处理实时数据流,并进行实时分析。
图计算:GraphX 是 Spark 的图计算库,用于处理大规模图数据。
Spark凭借其强大的性能和灵活性,赢得了众多企业的青睐,如阿里巴巴、百度、网易、英特尔等。
《Spark快速数据处理》将带您深入学习Spark,内容涵盖:
Spark安装与集群配置
Spark作业的运行方式(交互模式和脱机模式)
SparkContext的连接与使用
RDD(弹性分布式数据集)的创建与保存
Spark分布式数据处理
Shark与Hive的集成
Spark作业的测试与性能优化
通过学习本书,您将掌握使用Spark进行高效数据处理的技能,应对大数据时代的挑战。
spark
3
2024-04-29