randomCrossValidation.m描述了省略交叉验证可能导致过度拟合,从而产生误导性的高拟合优度。该文件使用泊松广义线性模型拟合随机泊松分布矩阵x和向量y,并讨论了两种拟合优度情况:没有交叉验证时出现的高伪R2值,以及交叉验证可以提供的正确低pR2值。过度拟合导致的高pR2值和缺乏交叉验证的良好拟合,意味着模型忽视了数据的基本属性,无法泛化到未使用的数据值。此外,文中还介绍了pR2度量的定义及其在MATLAB中的实现。