数学建模领域中,线性规划是一种研究如何通过合理安排和决策,利用有限资源以取得最大经济效益的数学方法。线性规划是数学规划的重要分支,研究在一组线性约束条件下,如何求解线性目标函数的最优解。在现代管理中,线性规划被广泛应用于解决生产实践中的问题。决策变量、目标函数、约束条件和目标值是线性规划的核心组成部分。单纯形方法作为线性规划的重要算法,在Matlab中通过linprog函数提供了有效的解决方案。Matlab软件使用矩阵和向量定义线性规划的标准形式,包括目标函数、不等式约束、等式约束和变量边界。线性规划问题的解分为可行解和最优解,可通过图解法直观展示解的过程。在实际操作中,Matlab的linprog函数返回最优解及其相关信息。