这是一份包含南京机场过去四年天气详细数据的数据挖掘数据集,适用于微软商业解决方案。
南京机场天气数据挖掘资源集
相关推荐
信息增益计算示例:以天气数据集为例
信息增益计算示例:以天气数据集为例
本示例使用天气数据集 weather,目标是计算使用属性“wind”(风力)划分数据集 S 所获得的信息增益。
数据集 S:
| outlook | temperature | humidity | wind | play ball ||---|---|---|---|---|| sunny | hot | high | weak | no || sunny | hot | high | strong | no || overcast | hot | high | weak | yes || rain | mild | high | weak | yes || rain | cool | normal | strong | no || overcast | cool | normal | strong | yes || sunny | mild | high | weak | no || sunny | cool | normal | weak | yes || rain | mild | normal | weak | yes || sunny | mild | normal | strong | yes || overcast | mild | high | strong | yes || overcast | hot | normal | weak | yes || rain | mild | high | strong | no |
计算步骤:
计算数据集 S 的信息熵。
根据属性“wind”的取值将数据集 S 划分成子集。
分别计算每个子集的信息熵。
计算划分后子集信息熵的加权平均值。
信息增益 = 数据集 S 的信息熵 - 划分后子集信息熵的加权平均值。
具体计算过程:
(此处省略具体计算过程,建议参考信息熵和信息增益的计算公式进行计算。)
结果:
通过计算可以得到数据集 S 对属性“wind”的信息增益。
算法与数据结构
3
2024-05-23
2020年1-3月全国天气数据集下载
标题“全国天气信息.zip”指出这是一个压缩文件,内含2020年1-3月的中国各地气象数据。数据量超过20万条,涵盖风向、空气质量等多维天气信息,并计划后续更新。压缩包包含“城市天气信息.sql”和“全国城市天气信息.xlsx”两个文件,分别提供SQL数据库格式和Excel表格格式,方便数据分析与处理。
MySQL
0
2024-08-23
爬虫获取近五年天气数据
获取近五年天气数据
数据挖掘
6
2024-05-13
南昌市2017至2019年天气数据一览
此文件包含江西省南昌市2017-2019年各日的天气信息,数据包括日期、最高温、最低温、天气状况以及风向风速等基础信息。文件适合有需求的用户下载,便于进一步研究和使用。
spark
0
2024-10-30
使用LSTM进行天气预测的数据集
标题\"使用LSTM进行天气预测的数据集\"表明我们关注一种专门用于使用长短期记忆网络(LSTM)进行天气预报的数据集。LSTM是递归神经网络(RNN)的一种变体,特别适合处理序列数据,例如时间序列的气象数据。这种数据集通常包含历史气象观测数据,用于训练模型以预测未来的天气条件。描述中提到的\"使用LSTM进行天气预测的数据集\"没有提供具体细节,但我们可以假设它包括一段时间内的关键气象变量记录,如温度、湿度、风速、气压等。这些数据可能按小时、每日或每周进行采样,并可能涵盖多个地点,以提高模型的泛化能力。文件名\"数据集\"提示这个数据集可能包含多个子文件或子目录,每个子文件可能代表不同地理位置的数据,或按不同的时间粒度组织。这种数据集通常划分为训练集、验证集和测试集,以便在模型开发过程中进行适当的性能评估。关于使用LSTM进行天气预测的关键知识点包括时间序列分析、LSTM网络结构、特征工程、模型训练、序列到序列预测和损失函数选择。
数据挖掘
2
2024-07-28
基于层次聚类的机场噪声数据挖掘
针对机场噪声数据的特征,提出了一种基于代表点的快速层次聚类算法。该算法在传统凝聚层次聚类算法的基础上,结合聚类代表点法和二分法策略进行改进,以提高效率。 为了评价聚类结果,提出了一种结合聚类代表点和聚类算法相似性定义的方法。实验结果表明,该算法不仅运行效率高,而且能够较准确地发现特定类型飞行事件的噪声分布模式。利用该分布模式,可以较准确地预测特定类型飞行事件的噪声分布状况。
数据挖掘
5
2024-05-19
数据挖掘案例分析:缺失天气属性的影响
对比之前的案例,我们注意到当前数据集中缺少了“天气”这一属性。之前的属性及规则如下表所示:
| 编号 | 风度 | 温度 | 是否外出 || ---- | ---- | --------- | -------- || 1 | 中 | 20-30℃ | 外出 || 2 | 低 | 30-35℃ | 不外出 || 3 | 大 | 10-20℃ | 不外出 || 4 | 大 | 30-35℃ | 外出 || 5 | 低 | 20-30℃ | 不外出 |
在缺少天气信息的情况下,数据挖掘的结果可能会出现偏差。
数据挖掘
3
2024-05-25
数据挖掘资料集
这是一份精心整理的数据挖掘资料集,欢迎学校用户积极参与讨论和交流。
数据挖掘
3
2024-05-15
海量数据集挖掘
一本阐述大数据经典理论和实践方法的专业书籍。
数据挖掘
3
2024-05-20