采用Matlab仿真实现的基于卡尔曼滤波的雷达跟踪算法。
基于卡尔曼滤波的雷达跟踪算法
相关推荐
基于卡尔曼滤波的目标跟踪算法实现
利用Matlab实现了卡尔曼滤波算法,并将其应用于目标跟踪场景。通过构建合适的系统模型和测量模型,算法能够有效地估计目标的状态,并在存在噪声的情况下实现对目标轨迹的平滑跟踪。
Matlab
17
2024-05-31
基于卡尔曼滤波的定位跟踪算法仿真优化
通过优化基于卡尔曼滤波的定位跟踪算法仿真,提升其精确度和效率。
Matlab
13
2024-07-18
基于卡尔曼滤波的人体跟踪程序
该程序利用卡尔曼滤波算法,实现了对运动目标的跟踪功能。适用于目标运动轨迹符合线性模型,且过程和观测噪声符合高斯分布的场景。
Matlab
12
2024-05-28
卡尔曼滤波在目标跟踪中的应用
卡尔曼滤波作为一种优秀的状态估计技术,在目标跟踪领域具有广泛的应用。它通过对目标状态的动态建模和测量值的信息融合,实现对目标运动轨迹的精确预测和跟踪。
Matlab
15
2024-08-19
matlab卡尔曼滤波算法的应用
这篇学术文章介绍了使用Matlab编写的卡尔曼滤波代码。
Matlab
17
2024-07-23
卡尔曼滤波算法原理与应用
卡尔曼滤波算法的核心,是把预测和观测这两件事儿巧妙结合,适合那种数据有点噪但又不至于乱成一锅粥的场景。状态预测、协方差更新这些公式,乍一看挺数学,但配合具体例子,比如追踪房间温度,理解起来就简单多了。线性系统的状态预测靠的是前一时刻的数据再加上点控制输入,像X(k|k-1) = A X(k-1|k-1) + B U(k)这种公式,写起来顺手,看着也不累。协方差预测那一步,更新了不确定性的判断,用的是P(k|k-1) = A P(k-1|k-1) A' + Q,其实也就考虑了点过程噪声。观测更新挺关键的一步,比如你测了个温度值,得结合预测值来算当前估计嘛。核心就在X(k|k) = X(k|k-1
Matlab
0
2025-06-23
基于卡尔曼滤波的目标追踪实现
基于卡尔曼滤波的目标追踪技术,详细介绍了代码实现和目标模型的建立,为技术交流提供参考。
Matlab
9
2024-09-30
Matlab GUI 卡尔曼滤波多目标跟踪实战
CSDN 佛怒唐莲发布的视频资源均包含完整的、可运行的代码,适合新手学习使用。
资源说明:
主要功能文件:main.m
其他文件:调用函数
代码运行环境:Matlab 2019b
运行步骤:
将所有文件放入 Matlab 当前文件夹
双击打开 main.m 文件
点击运行
其他服务:
代码咨询
完整代码获取
期刊/参考文献复现
Matlab 程序定制
科研合作
如有需要,请联系博主或扫描博客文章底部 QQ 名片。
Matlab
20
2024-05-28
卡尔曼滤波的MATLAB实现
卡尔曼滤波是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。介绍了卡尔曼滤波的MATLAB实现方法,详细讨论了其在实际应用中的效果和优势。
Matlab
11
2024-07-13