熊猫作业-深入Python Pandas数据背景!现在是时候了解您的Pandas技能并将其应用于新挑战。您需要完成Pandas Challenge中的一项任务。确保专注并将您的技能发挥到极致,因为这些技能将成为您数据分析工具箱中的强大资产。创建名为pandas-challenge的新存储库,并在本地设置HeroesOfPymoli的Jupyter笔记本以运行分析。完成后将更改推送到GitHub或GitLab。
pandas-challenge《Pymoli英雄》游戏数据分析
相关推荐
Python-Pandas-Challenge探索《Pymoli英雄》游戏数据
作为一家独立游戏公司的首席分析师,您的任务是分析最新奇幻游戏《Pymoli英雄》的数据。该游戏免费提供,但玩家可选择购买可选物品以提升游戏体验。您需生成报告,分析购买数据并提供深入见解,包括玩家人数、独特商品数、平均购买价、总购买数、总收入、性别统计及年龄分布。报告将详细展示各项数据及其在游戏市场的影响。
数据挖掘
3
2024-07-17
Pandas挑战《Pymoli英雄》数据分析任务
恭喜!在深入挖掘数据后,您获得了一家独立游戏公司首席分析师的职位。您的任务是分析最新幻想游戏《Pymoli英雄》的购买数据。该游戏与其他同类游戏一样,是免费的,但鼓励玩家购买可选物品以增强游戏体验。作为首要任务,公司要求您生成一份报告,从购买数据中提炼出有意义的见解。报告内容包括玩家人数、总购买次数、采购分析(总计)、独特商品数量、平均购买价格、总购买数量、总收入、性别人口统计、男性玩家百分比及数量、女性玩家百分比及数量、其他/未公开的百分比及数量、采购分析(性别)、每人平均购买数量、年龄人口统计、各年龄段购买数量、平均购买价格、总购买价值以及最高支出者。
数据挖掘
0
2024-09-16
探索Pymoli英雄:游戏内购买数据分析
Pymoli英雄游戏内购买数据分析报告
玩家概况
总玩家人数
购买分析
独特商品数量
平均购买价格
购买总次数
总收入
玩家性别分布
男性玩家百分比及数量
女性玩家百分比及数量
数据挖掘
4
2024-05-21
Pandas作业-英雄的挑战
在Pymoli数据挖掘任务中,您将面临两项数据挑战,您可以选择其中之一。在本地存储库中创建相应的目录,并将其推送到GitHub或GitLab。
数据挖掘
4
2024-04-29
python数据分析pandas
使用pandas进行Python数据分析是非常有效的。
算法与数据结构
3
2024-07-15
Python Pandas 数据分析挑战
本项目包含两个可选的数据分析挑战,考验您对 Python Pandas 的理解和应用能力。请从“Pymoli 英雄”和“城市学校分析”中选择一项挑战完成。
项目结构:* 为项目创建一个新的代码仓库,命名为“pandas-challenge”。* 在本地仓库中创建对应挑战名称的文件夹(“HeroesOfPymoli” 或 “PyCitySchools”)。* 在文件夹中创建 Jupyter Notebook 文件,作为分析脚本。* 将所有更改上传至 GitHub 或 GitLab。
挑战选项:1. Pymoli 英雄: 分析游戏玩家数据,例如玩家数量、热门商品、消费趋势等,并提供洞察。2. 城市学校分析: 分析学校和学生数据,评估学校表现、预算分配策略等,并撰写报告。
请选择您感兴趣的挑战,深入研究数据,并运用 Pandas 技能进行分析。
数据挖掘
3
2024-06-30
皮莫利英雄采购数据分析报告
玩家人数: 总人数
采购分析(总计): 采购总数、商品种类、平均购买价格、总收入
性别人口统计: 男性、女性、其他/未公开玩家比例和人数
采购分析(性别): 按性别划分的购买数量、平均价格、总价值、人均购买总数
年龄人口统计: 按年龄段划分的购买数量、平均价格、总价值、人均购买总数
最高支出者: 总购买金额最高者
数据挖掘
4
2024-05-15
Python 数据分析利器:Pandas 库简介
Pandas 库作为数据处理工具,为数据分析师提供了一系列便利操作,包括数据类型转换、缺失值处理、描述性统计分析和数据汇总等。其核心操作对象为序列(类似数据集中的列)和数据框(类似表格)。
统计分析
5
2024-05-16
Python数据分析pandas基础操作简介
Python的pandas库是进行数据分析和处理的重要工具。学习pandas基础操作可以帮助分析师有效管理和处理数据,包括数据导入、索引、切片和聚合等操作。pandas提供了强大的数据结构和工具,适用于各种数据处理需求。
数据挖掘
0
2024-08-09