购物车matlab Multiagent-振荡器-物理实现Python代码使用强化学习以物理方式实现两个振荡器与领导者之间的同步。这是由Jakob Harig和Ryan Russell使用“强化学习”高级项目实现的车杆系统同步。振荡器是用于在我们的项目中使用强化学习来测试多主体同步的初步模型,因为系统很稳定。该代码将以物理方式实现两个跟随器振荡器与一个遵循正弦波模式的虚拟引导器的同步。该代码将在NVIDIA Jetson Nano上运行,通过XBee模块进行通信,从超声波传感器获取位置和速度数据,并使用相同的PWM信号驱动振荡器上的所有电机。Multiagent_Oscillator_1.py和Multiagent_Oscillator_2.py:说明:该python代码使用在线增强学习控制器并利用径向基函数实现了要在NVIDIA Jetson Nano上运行的振荡器的同步。然后将测试结果输出到mat文件中,以使用MATLAB进行绘图和评估。在购物车1上运行的终端提示: sudo python3 Multiagent_Oscillator_1.py在购物车2上运行的
使用强化学习实现多主体振荡器物理同步
相关推荐
强化学习概览
强化学习涉及代理在环境中采取行动并根据其后果获得奖励或惩罚,从而学习最佳行为策略。它主要用于:- 游戏- 机器人控制- 资源管理常用的强化学习算法包括:- Q学习- SARSA- DQN
算法与数据结构
4
2024-05-13
使用Matlab开发同步输入正弦弛豫振荡器VI1的训练参数
在心脏病学领域,利用Simulink的新模块库进行同步输入正弦弛豫振荡器VI1的训练。
Matlab
2
2024-07-13
深度强化学习matlab程序源码下载
深度强化学习matlab程序源码属稀缺资源,详细阐述了Q学习的编程实现过程。
Matlab
0
2024-09-30
强化学习在机器学习中的重要性
这份PPT是我学习制作的,但由于我的水平有限,可能还有不完善的地方,希望能够通过更多交流改进。转载时请注明出处,谢谢!
算法与数据结构
3
2024-07-19
Matlab仿真维恩桥振荡器开发
利用Matlab进行维恩桥振荡器的开发和微分方程求解仿真。
Matlab
0
2024-08-13
使用Matlab进行强化学习在算法交易中的应用 Marco Decision Code
Python 3.6.5用于入门强化学习在算法交易的马尔科夫决策Matlab源码。建议创建虚拟环境以避免依赖问题。您可以使用Virtualenv在当前的Python解释器中创建虚拟环境。当前依赖关系列在requirements-cpu.txt或其GPU等效文件中,可以使用以下命令进行安装: pip3 install virtualenv python3 -m virtualenv source env/bin/activate pip install -r requirements-cpu.txt GPU支持的等效要求在requirements-gpu.txt中。我们正在优化两种资产之间的资金分配。您可以运行python main.py [source type],其中源类型包括markov,markov2,iid,mix,real。这些选项将填充Q表并显示策略遵循的结果。
Matlab
1
2024-07-27
从马尔可夫决策过程到深度强化学习
这份由张志华老师提供的PPT资源,以清晰的思路梳理了从马尔可夫决策过程 (Markov Decision Processes) 到强化学习 (Reinforcement Learning),再到深度强化学习 (Deep Reinforcement Learning) 的核心概念和方法,推荐学习!
算法与数据结构
5
2024-05-25
基于强化学习模型的选择数据拟合Matlab代码
该Matlab代码用于将强化学习模型拟合到选择数据。主要功能包括:
example.m:提供了一个简单的学习用例,展示了如何在标准增量规则强化学习模型中使用该代码。
rlfit.m:接受一个用于计算动作值的函数句柄、选择和结果历史记录以及模型参数约束,进行模型拟合并返回对数似然、动作值和拟合参数。
multmin.m:使用多个随机起点进行模型拟合,以找到最佳参数。
LL_softmax.m:处理softmax选择函数的对数似然计算,并包含一些渐近展开式,以避免在极端情况下出现NaN。
Q_model.m:实现了一个具有单个参数(学习率)的标准增量规则强化学习模型。
用户需要提供一个函数,该函数根据一组参数、选择历史记录和结果历史记录来计算每个选择的动作值。该代码支持多种结果类型,并使用softmax函数进行选择。
Matlab
3
2024-05-29
强化学习优化大型数据库关联规则挖掘算法
利用强化学习算法优化treap数据结构,提升大型数据库中关联规则挖掘效率。该算法计算变量优先级,利用强化学习构建treap结构,通过遍历查找关系。实验验证其有效性,在低关联度下较Apriori和FP算法有显著提升。
数据挖掘
2
2024-05-25