这款优化的回归预测Matlab程序附带详细的使用说明,为您提供准确的预测结果。
优化回归预测工具
相关推荐
GBDT回归模型MATLAB篮球预测
gbdt 的回归源码、matlab 的玩法、篮球统计预测——这个项目结合得还挺巧妙的。用的是 MATLAB R2014a 跑模型,还支持 Python 环境来抓数据,连scrapy爬虫都整上了,自动化程度蛮高。数据也靠谱,1979-80 赛季到现在的比赛全覆盖,来自,不怕没素材玩。GBDT、MARS 都能跑,想搞传统建模又想自动化试试,确实是个不错的参考。
Matlab
0
2025-06-29
LSSVM参数优化与回归预测基于鲸鱼优化算法的Matlab实现
基于鲸鱼优化算法的 LSSVM 参数调优,用起来还挺顺的。你要是平时玩过 LSSVM,应该知道参数调不对,预测效果差得离谱。这套方案用鲸鱼优化算法(WOA)来找最优组合,省心不少,准确率也提上来了。Matlab 代码也贴得比较清楚,基本照着改就能跑。
优化过程分几步走,先定义问题,初始化参数,再让鲸鱼算法慢慢收敛。中间用到了核函数和惩罚参数这两个关键点,调好了效果立竿见影。你想搞回归预测的,是数据量不大的情况,LSSVM 真挺适合。
Matlab 实现部分也比较细,该注释的地方都有。像trainlssvm和simlssvm这些函数,配合 WOA 调参,直接就能拿结果。整体结构清晰,思路也蛮实用
Hadoop
0
2025-06-29
临床预测模型Logistic回归分析
想做临床预测模型的朋友可以试试Logistic 回归,它是二分类问题的常用方法。多医疗数据集都会用到,能够帮你预测病人的风险,比如是否患病。这种模型的优点是计算相对简单,结果也易于解释。你也可以搭配一些常见的数据工具来提升预测的准确度,像sklearn库就适合这种回归问题。如果你进一步了解其他相关预测模型,也可以看看一些我分享的链接。,Logistic 回归对于初学者也比较友好,入门较快,适合用来做一些临床数据预测。
统计分析
0
2025-06-25
【预测模型-ELAMN预测】基于遗传算法优化ELMAN神经网络实现数据回归预测Matlab代码.zip
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多个领域的Matlab仿真代码集合。
Matlab
22
2024-08-09
数据预测利器:线性回归模型解析
数据预测利器:线性回归模型解析
线性回归模型是预测型数据分析中常用的工具,它通过建立自变量和因变量之间的线性关系,来预测未来的数据趋势。
核心概念
自变量(Independent Variable): 影响预测结果的因素。
因变量(Dependent Variable): 我们试图预测的结果。
回归系数(Coefficient): 表示自变量对因变量影响程度的数值。
截距(Intercept): 当所有自变量为0时,因变量的预测值。
模型建立
线性回归模型的建立通常包含以下步骤:
数据收集与准备: 收集相关数据,并进行清洗和预处理。
模型选择: 根据数据特征和分析目标选择合适
统计分析
15
2024-05-15
MATLAB逐步回归:探索最佳预测变量
在MATLAB统计工具箱中,逐步回归 (stepwise) 函数提供了一种精细化的回归分析方法。
初始模型包含所有自变量:使用 stepwise(x,y) 命令,可以构建一个包含所有自变量的初始模型。得到的 Stepwise Plot 图和 Stepwise Table 表格提供模型拟合度和变量显著性的关键信息。
虚线预示模型显著性不足:Stepwise Plot 图中的四条虚线表明模型的整体显著性较差,意味着该模型的预测能力可能有限。
识别最差变量:Stepwise Table 表格清晰地展示了每个变量的显著性。根据表格信息,可以确定变量 x3 和 x4 的显著性最差,暗示这些变量对模型
算法与数据结构
13
2024-05-21
随机森林回归的QOOB保形预测方法
分位数袋外 (QOOB) 保形是一种用于预测推理的无分布方法。QOOB 主要用于回归问题,但也可以扩展到分类等非回归问题。
使用方法
克隆代码库: git clone https://github.com/AIgen/QOOB.git
运行代码: 需要 MATLAB 环境 (MATLAB 2019b 开发,MATLAB 2019a 测试)。
直接调用 QOOB 生成预测集
代码库包含 QOOB 和其他基线保形方法的实现,可以重现论文 [3] 中 QOOB 与其他保形方法在 11 个 UCI 数据集上的比较结果。
Matlab
13
2024-05-21
MATLAB非线性回归人口预测
非线性回归的 MATLAB 代码,预测人口数量挺方便的工具。如果你也搞过人口预测这类项目,应该知道手动拟合曲线有多麻烦。这套代码直接搞定从数据导入到结果可视化的全流程,甚至还留了用户交互的口子,自己输数据就能出预测结果,效率高不少。
非线性函数拟合一直是建模里的硬骨头,尤其是遇到增长趋势不太规律的数据。这份代码用的是 MATLAB 的fitnlm函数,适合做指数、sigmoid甚至多项式的非线性回归,跑起来响应也快,脚本逻辑也清晰。
数据部分可以直接导入表格,结构标准就能跑,比较适合人口、经济类的时间序列建模场景。你也可以在脚本里替换成自己的数据,模型参数一调就能跑预测,图也会自动出来。
如果
算法与数据结构
0
2025-06-17
预测型数据分析:分类与逻辑回归
预测型数据分析:分类与逻辑回归
数据分析师培训
本课件涵盖以下内容:
分类方法概述
逻辑回归模型原理
模型建立与评估
应用案例分析
统计分析
16
2024-05-15