全面探讨了基于高斯混合模型的图像序列运动目标检测技术,包括目标检测与追踪技术的详细介绍,还涵盖了部分matlab源代码及仿真图形。技术的进步为图像处理领域带来了新的视角和方法。
图像序列运动目标检测技术研究基于高斯混合模型
相关推荐
多高斯模型运动目标检测算法
多高斯模型是一种背景消减的运动目标检测方法,该算法具有新颖性和易实现性,采用Matlab编写。
Matlab
2
2024-07-28
基于Matlab的视频运动目标检测
该程序使用Matlab读取视频文件中的图像帧,并对每帧图像进行运动目标检测,实现对视频中运动目标的持续追踪。
Matlab
6
2024-05-23
matlab高斯混合模型
matlab高斯混合模型是一种在matlab中使用的模型。
Matlab
0
2024-08-22
基于数据挖掘的木马病毒检测技术研究
摘要:基于木马病毒行为特性,提出基于数据挖掘的相似度技术的主动木马病毒检测及预防算法。该算法从规则化、行为过滤及自学习三个方面确保了算法的完备性和有效性。首先,依据木马病毒特征码及行为特性,进行特征的规则化,建立起初的木马病毒规则库。其次,通过建立进程行为特征捕捉及分析过程,采用聚类分析方法完成行为特征的规则化。最后,利用规则库及相似度主动对比法,分析对比可疑进程,确定其性质。分析和实验结果显示,该算法具备自主学习和主动防御特性,有效平衡了静态测试技术和动态测试技术的优缺点。
数据挖掘
0
2024-10-22
低照度图像增强技术研究
在现实生活中,由系统采集设备所获取的图像和视频,在周围环境光照不足的情况下容易出现对比度下降、细节丢失、色彩失真等问题。这些问题严重影响了图像后续处理与应用的效果。因此,有效地对低照度图像进行增强显得尤为重要。分析了低照度环境下图像质量降低的原因及其特性,探讨了当前常用的图像增强算法,并基于实际情况对这些算法进行了改进和优化。
Matlab
0
2024-09-16
基于优化K-Means算法的入侵检测技术研究
随着数据挖掘技术在入侵检测领域应用的不断深入,K-Means算法作为一种高效的聚类算法,其应用范围也在不断扩大。然而,传统的K-Means算法在处理入侵检测问题时存在一些不足,例如对初始聚类中心敏感、容易陷入局部最优解等。为了克服这些问题,本研究提出了一种改进的K-Means算法,用于入侵检测。该算法通过优化初始聚类中心的选取以及引入新的距离度量方法,提高了聚类结果的准确性和稳定性。实验结果表明,相比于传统的K-Means算法,改进后的算法在入侵检测方面具有更高的检测率和更低的误报率。
数据挖掘
3
2024-05-27
基于互信息的图像配准技术研究
深入探讨了基于互信息的图像配准方法。研究包括对互信息理论的详细解析和在Matlab中进行的图像配准仿真实验。实验结果分析表明,该算法在性能上表现出色。此外,针对传统插值方法效率低下和灰度影响问题,引入了PV插值技术,有效抑制了互信息的大幅变换,优化了配准参数。针对搜索方向线性无关问题,还研究了改进的Powell算法,确保搜索方向的线性独立性。最后,为提高配准精度,提出了基于小波变换和互信息的图像分层配准方法。
Matlab
0
2024-09-25
煤矿安全监控系统自我检测技术研究
为确保煤矿安全监控系统监控效果可靠,根据相关规定建立了合规性评估体系,包括设备安装、配置、系统运行维护、异常统计分析和平台运行组件等标准。基于开源GIS技术实现了矿井巷道布局的矢量化,结合实时监测数据,制定了各项评估方法。研发了煤矿安全监控系统自我检测系统,并成功应用于煤矿实地,有效支持系统异常的自动识别。
统计分析
0
2024-08-27
基于高斯混合模型的说话人识别与验证系统
这是一个提供了基于高斯混合模型的说话人识别和验证系统的资源下载,包含了MATLAB算法和工具源码。适用于毕业设计和课程设计作业,所有源码经过严格测试,可直接运行。如有任何使用问题,请随时与我们联系,我们将第一时间进行解答。
Matlab
0
2024-08-18