经典小世界网络WS的Matlab源码,用于生成网络结构。
经典小世界网络WS的Matlab源码下载
相关推荐
MATLAB BA无标度网络与WS小世界网络代码优化邻接矩阵表示,降低内存消耗
在IT领域,复杂网络研究近年来备受关注,尤其是在模拟社会网络、互联网和生物网络等系统方面。MATLAB作为强大的数值计算和可视化工具,在复杂网络的建模与分析中具有广泛应用。详细介绍了使用MATLAB实现BA无标度网络和WS小世界网络的方法,特别是如何通过优化邻接矩阵表示来减少内存消耗。1. BA无标度网络模型模拟了节点增长过程,节点更倾向于连接到高度连接的节点,形成幂律分布的度。在MATLAB中,通过生成随机优先级列表并逐步添加节点来实现。2. WS小世界网络模型从规则网络出发,通过随机重连相邻节点,形成短路径和高聚类系数的特性。MATLAB中可先构建环形或二维网格,再通过“rewiring”操作转换为小世界网络。3. 邻接矩阵是复杂网络常用的表示方法,通过MATLAB的稀疏矩阵可显著减少内存消耗,特别适用于大规模网络。4. MATLAB提供丰富的矩阵运算函数,便于计算网络特性如度分布、聚类系数、平均路径长度等。5. 优化算法包括动态内存分配和流程优化,进一步提高了算法效率。BA和WS模型不仅在理论研究中有应用,还广泛用于社交网络分析、生物网络研究等实际问题的建模。MATLAB代码的实现,为快速模拟和测试不同网络结构的影响提供了基础。
算法与数据结构
0
2024-08-28
小世界和无尺度网络的 MATLAB 程序实现
本 MATLAB 程序提供了一种生成小世界 (SW) 和无尺度 (NW) 网络的方法,允许用户手动调整参数以获得所需结果。
Matlab
3
2024-05-31
Matlab经典小代码安德鲁Hulme的GitHubCV
安德鲁·赫尔姆(Andrew Hulme)是一位全职开发人员,在Makers Academy接受培训,专注于JavaScript和React。他拥有布里斯托大学的机械工程硕士学位,并在工程咨询公司工作超过3年,包括Ramboll。目前,他正在建设两个全栈项目,并积极参与技术聚会,如React London聚会和Waitrose.com的React迁移项目。他的GitHub存储库描述了他在技术领域的最新工作。
Matlab
0
2024-08-05
基于小波变换的图像去噪算法——matlab源码下载
随着图像处理技术的进步,利用小波变换进行图像去噪已成为一种常见方法。介绍了基于小波变换的多种去噪算法,包括软阈值、硬阈值、半软阈值和改进阈值方法,并提供了相应的matlab源码下载链接。这些算法不仅可以有效减少图像中的噪声,还能保留图像的关键细节,适用于各种需要高质量图像的应用场景。
Matlab
2
2024-07-27
Matlab经典小代码线性回归简介
2020年12月27日,我们感谢您的评论。给我发电子邮件!雇用我!在过去的几周中,我们一直专注于分类问题。今天,我们要稍微改变一下齿轮,看看回归问题。今天,我们将以一维问题为例,介绍如何定义预测变量和响应变量的基本概念。我们将探讨如何将此问题转化为优化任务,并使用基本算法来解决。因此,回归在一维情况下,就是要在多个点上拟合一条线的过程。这并非新鲜事物。我们有一个x轴和一个y轴,有几个点要处理,我们希望通过某种方式将一条线穿过这些点的中心。那我们该如何做到呢?为何我们需要这样做呢?让我们通过一个小例子来解释。一所常春藤联盟大学收集了关于新生入学的数据,并在一年级结束时记录了每个人的GPA。这就是您在此处看到的直方图。GPA是介于0到4之间的数字,横轴显示的是GPA水平,纵轴显示的是频率,即达到特定等级的人数。在这种情况下,看起来最频繁的等级大致在2.25左右,这代表C+级别。
Matlab
0
2024-08-27
MATLAB神经网络单层感知器源码下载
使用MATLAB开发的神经网络单层感知器程序源码,可作为二次开发的基础。欢迎有兴趣的朋友下载使用。
Matlab
0
2024-08-11
基于神经网络的网络入侵检测Matlab源码
聚类方法是数据挖掘中常用的技术,它根据对象的相似性将它们分组。模糊c均值聚类算法(FCM)是一种根据隶属度确定每个元素属于某个类别的方法。FCM将n个数据向量分为c个模糊类别,并计算每个类别的聚类中心,以最小化模糊目标函数。
Matlab
2
2024-07-22
小波神经网络时间序列预测代码下载
MATLAB实现的小波神经网络时间序列预测代码提供下载。
Matlab
0
2024-09-26
MATLAB实现小波神经网络示例
小波神经网络(WNN)是一种结合了小波理论与神经网络模型的复合结构,在处理非线性、非平稳信号时具有独特优势。本资料包WNN的matlab实现例程.zip提供了一个在MATLAB环境下实现小波神经网络的实例,具有极高的参考价值。
小波函数:是小波神经网络的基础,使用了Mexihat函数,适合信号精细分析。
网络结构:包含输入层、隐藏层和输出层,具体结构需查看源代码。
训练过程:使用MATLAB神经网络工具箱,包括反向传播、小波传播等算法,调整网络权重。
数据文件:压缩包中的数据用于训练和测试,可能是时间序列或图像数据。
应用领域:在信号处理、图像识别、故障诊断、金融预测等多个领域广泛应用。
要深入理解和利用这个例程,需要一定的MATLAB编程基础以及对神经网络和小波理论的了解。
算法与数据结构
0
2024-10-31