由于分布式数据流大数据中类别边界的复杂性和变化性,传统基于单变量决策树的集成分类器需要大量基分类器来准确近似类别边界,从而降低了学习和分类性能。提出基于几何轮廓相似度的多变量决策树(GODT),通过将n维空间样本点投影到有序的一维空间点集,并根据类别投影边界划分子集,递归投影分裂不同类别集合的交集,最终生成决策树。实验证明,GODT在分类精度上表现出色,并且训练时间相对较低,有效结合了单变量决策树的高效率和多变量决策树的表示能力。
多变量决策树在分布式数据流大数据分类中的革新应用
相关推荐
多变量时间序列的模糊决策树挖掘研究
针对当前时间序列决策研究方法存在的问题,提出了多变量时间序列模糊决策树挖掘方法,并通过实验分析验证了该方法能够有效捕捉多变量时间序列子序列的形态及后期趋势或状态的决策信息。
数据挖掘
2
2024-07-17
数据挖掘中的决策树应用
决策树是一种预测模型,用于映射对象属性与对象值的关系。每个节点代表一个对象,分叉路径表示可能的属性值,叶节点对应路径上的对象值。决策树通常只有单一输出,若需要多输出,可建立多个独立的决策树。在数据挖掘中,通过训练数据分析属性对结果的影响大小,利用信息增益理论和熵概念实现决策树构建。决策树技术广泛应用于数据分析和预测,如银行用于贷款风险预测。
数据挖掘
2
2024-07-21
决策树在实际应用中的多重角色
决策树被广泛用于多个领域,包括金融风险评估、医疗诊断、营销策略制定和网络安全等。例如,在金融风险评估中,决策树用于预测客户借款违约概率,帮助银行更好地管理风险。在医疗诊断中,医生可以根据病人的症状和体征构建决策树,快速准确地判断病情。
算法与数据结构
0
2024-10-12
分布式大数据搜索在检修领域的应用
1.2规划领域中,提升负荷预测能力。通过大数据分析和数据挖掘技术,支持电力企业基础设施选址和建设决策。例如,北京xx计划利用气象数据和公司发电机数据,采用大数据模型解决方案来优化风力发电机选址,最大化发电量并降低能源成本。1.3建设领域中,增强现场安全管理能力,利用分布式存储、并行计算和模式识别技术,分析现场照片,识别安全隐患并核查安全整改措施的执行情况。1.4运行领域中,提升新能源调度管理能力,应用机器学习和模式识别技术,分析新能源发电能力与气象因素的关系,精确预测和管理发电能力。1.5检修领域中,提升状态检修管理能力,利用并行计算技术优化检修策略,分析设备状态和运行风险,实现故障预判和预警,指导状态检修工作。
数据挖掘
1
2024-07-27
MATLAB 决策树分类器
本示例代码展示了如何使用 MATLAB 决策树算法对特定疾病进行诊断,提供可下载的代码供参考。
算法与数据结构
4
2024-05-13
分类算法:决策树详解
分类算法:将数据分类到预定义类别中。
分类算法面临的问题:过拟合、欠拟合、特征选择。
决策树算法:采用树状结构,通过一系列规则将数据划分到不同的类中。
评估模型准确性:使用准确率、召回率、F1值等指标。
应用:医疗诊断、市场细分、欺诈检测等。
算法与数据结构
3
2024-05-13
分布式数据仓库在企业中的应用
与完全独立的数据仓库模式不同,大多数企业内部的部门之间存在一定程度的集成。很少有企业像图6-20所示那样完全自主运作。更常见的是,多个数据仓库项目以图6-21所示的形式开发。
逻辑上属于同一个数据仓库
在图6-21中,一家公司在世界各地设有不同的分支机构(站点),例如美国、加拿大、南美、远东和非洲等地。每个分支机构都拥有自己特有的数据,机构之间不存在数据重叠,特别是对于详细的事务数据。
当第一个体系结构环境建立后,公司期望为每个分公司创建一个数据仓库。不同分支机构之间存在一定程度的业务集成,同时也假定在不同的区域,业务运作具有当地特色。这种企业组织模式在许多公司中很常见。
许多企业在构建数据仓库时,首先是在每个位于不同地域的部门内创建一个局部数据仓库。图6-22展示了一个局部数据仓库的构造情况。每个分部根据自己的需要创建具有本地特色的自主数据仓库。值得注意的是,至少就事务数据而言,在不同的区域之间不存在冗余的细节数据。换句话说,反映非洲事务的数据单元不可能出现在欧洲的局部数据仓库中。
局部数据仓库的优缺点
使用这种方法创建分布式全局数据仓库有几个优缺点。
优点:
快速完成:每个局部小组控制局部数据仓库的资源和设计,并乐于拥有这样的自主权和控制权。
立竿见影:这种方式开发的数据仓库的优点能够在整个企业内实时地表现出来。局部数据仓库可以在6个月内建成、运行并使局部层分公司受益。
缺点:
无法识别或合理处理部门间数据结构(非内容)的共同性。
DB2
10
2024-05-12
数据挖掘决策树
利用 C++ 实现决策树,可导入文本数据源,动态进行决策分析。
数据挖掘
2
2024-05-01
数据挖掘中的决策树基础概念
决策树是一种用于分类问题的重要算法,通过学习目标函数f,将属性集合X映射到预定义的类标号y。分类任务的数据输入是一组记录,每条记录用元组(X, y)表示,其中X是属性集合,y是记录的类标号。决策树算法在数据挖掘中具有广泛的应用。
数据挖掘
2
2024-07-18