详细了解主特征值求解方法及其Matlab实现,请访问链接:http://mathfaculty.fullerton.edu/mathews/n2003/PowerMethodMod.html。例如,给定输入误差0.001的容差,最大特征值为11.66225,对应的特征向量为:0.02490 0.42174 1.00000。
用Matlab实现的主特征值求解方法幂法详解及代码分享
相关推荐
熵值法MATLAB代码优化-有界特征值的优化(optWBoundEigenval)
熵值法MATLAB代码优化(optWBoundEigenval)有界特征值的优化
作者:亚当·桑德勒 日期:1/28/21
主要步骤和文件说明:
配置适当的参数文件(/params/中的示例)。
使用参数文件作为输入,运行main.py。
/文件夹/params/包含以下内容:
asymmetric_valley.py:非对称谷优化器(经过修改)。
cifar100_data.py:CIFAR-100数据的加载器。
cifar10_data.py:CIFAR-10数据的加载器。
cmd.py:用于GPU跟踪(来自)。
cov_shift_acc_comp.R:比较精度斜率与协变量平移的L1-范数。
cov_shift_plots.R:生成精度与协变量平移的L1-范数的关系图。
cov_shift_test.py:协变量平移特征的测试模型。
dcnn.py:修改后的数据加载器和神经网络(NN),用于胸部X射线数据。
dnet.py:修改后的DenseNet实现。
densitynet.py:DenseNet的实现(来自)。
forest_data.py:森林覆盖类型数据加载器和模型。
Matlab
0
2024-11-06
matlab教程特征值分解详解
matlab教程中,特征值分解函数eig()用于计算符号方阵的特征值和特征向量。具体使用方法包括:使用E = eig(A)来求解符号方阵A的特征值E;使用[v,E] = eig(A)来求解符号方阵A的特征值E和对应的特征向量v。
Matlab
0
2024-08-22
特征值界估计方法
本章将探讨特征值界估计方法,并以映射概念作为基础。映射是集合之间的一种对应关系,对于给定集合 S 和 T,S 到 T 的映射 η 将 S 中的每个元素 α 唯一对应到 T 中的元素 β。
S 中元素 α 在映射 η 下的像记为 η(α)。
S 在映射 η 下的像集 Im η 包含所有 S 中元素在映射下的像,即 Im η = {η(α) ∣ α ∈ S}。
元素 β 的原像集 η−(β) 包含所有映射到 β 的 S 中元素,即 η−(β) = {α ∈ S ∣ η(α) = β}。
算法与数据结构
2
2024-05-31
Matlab实现矩阵特征值与特征向量计算方法详解及实例分析
详细介绍了在Matlab中实现矩阵特征值与特征向量计算的多种方法,包括幂法、反幂法、位移反幂法、雅可比方法、豪斯霍尔德方法、实对称矩阵的三对角化、QR方法以及求根位移QR方法,还涵盖了广义特征值问题的解决方案。文章为数值分析和数值代数领域的研究者提供全面的资源和实验报告分析。
Matlab
0
2024-09-26
数值计算中的主特征值与特征向量分析
数值计算中,通过主特征值和特征向量的乘幂法与反乘幂法进行分析。
Matlab
0
2024-08-24
Matlab实现矩阵特征值与特征向量计算方法综述
这篇资源详细介绍了在Matlab中实现矩阵特征值与特征向量计算的多种方法,包括幂法、反幂法、位移反幂法、雅可比方法、豪斯霍尔德方法、实对称矩阵的三对角化、QR方法以及求根位移QR方法。内容涵盖了实验报告和例题分析,为数值分析和数值代数领域的学习者提供了丰富的学习资料。这些资源不仅全面,而且经过整理和优化,确保能够满足专业学术需求。
Matlab
4
2024-07-20
MATLAB学习资源矩阵特征值和特征向量详解
在MATLAB中,计算矩阵的特征值可以使用函数eig或eigs,特别是eigs适用于稀疏矩阵。这些工具在矩阵分析和数值计算中起着关键作用。
Matlab
0
2024-10-03
基于预测特征值方法的盲源数量检测
假设信号模型为 Y(k)=HX(k)+B(k),本脚本提供了一种盲目检测信号源数量(X(k)的数量)的方法。假设噪声在空间上是白噪声,并且假设接收器的数量严格大于信号源的数量。详细信息请参考文献[CHE91] Chen、Wong.KM和Reilly。JP,“信号数量的检测:预测的特征阈值方法”,IEEE信号处理交易,1991年。
Matlab
2
2024-07-28
matlab实现特征值计算癫痫预测挑战Kaggle竞赛解析
本存储库包含了我在Kaggle上参与美国癫痫协会癫痫发作预测挑战时使用的matlab代码。由于清理代码后的影响,提交结果可能会有所不同。尽管得分不高,但展示了我在遗传算法和随机特征蒙版方面的探索,同时还介绍了乔纳森·塔普森的线性回归方法。对于具体代码的进一步了解,可能需要大约100-150GB的可用磁盘空间。详细内容可参见main.py、genetic.py和ensemble.py。
Matlab
0
2024-10-01