作者:吴子清(乔治)。这个项目提供了一个基于Matlab的GUI,用于预处理Kaggle竞赛数据,进行功能选择和分类方法测试,特别是Santander客户满意度。运行后可评估分类性能的平均AUC值,并生成测试数据集的结果csv文件。包含两个主要文件Customer_GUI.m和Customer_GUI.fig,以及三个数据文件:train.mat,test.mat和ID.mat。运行简单,适用于Matlab竞赛者。
Matlab程序分类特征选择GUI
相关推荐
优化特征选择的Matlab程序
这段Matlab中的mrmrd程序代码专注于特征选择,帮助用户找出最佳特征。
Matlab
0
2024-10-02
MATLAB漂浮物垃圾分类识别程序(GUI界面)
这个项目是一个完整的MATLAB漂浮物垃圾分类识别程序,适合大学生学习和应对数字图像处理课设、大作业以及毕设。项目独立完成,欢迎下载和交流,共同学习,共同进步!
Matlab
1
2024-08-03
Web挖掘与文本分类中的特征选择算法
面对海量Web数据,如何高效处理和分析成为关键。特征选择算法作为数据挖掘、文本分类以及Web分类的核心技术之一,为我们提供了有效解决方案。通过筛选最具代表性的特征,该算法可以降低数据维度、提高模型效率,并提升分类精度。
数据挖掘
3
2024-05-25
MATLAB水果分类系统GUI界面.zip
MATLAB水果分类系统GUI界面.zip
Matlab
4
2024-07-22
水果识别 Matlab GUI 程序
这是一个基于 Matlab GUI 的水果识别程序,并经过测试确保可成功运行。
数据挖掘
2
2024-05-28
假设检验代码 Matlab - 半监督特征选择
Matlab 代码实现了论文《用于半监督特征选择的简单策略》中提出的方法,该论文发表于《机器学习杂志》。
代码功能:
semiIAMB.m:实现了 Semi-IAMB 算法,应用于 Markov Blanket 发现 IAMB (IAMB.m) 的切换过程,用于半监督场景中的假设检验。
semiMIM.m 和 semiJMI.m:实现了 Semi-MIM 和 Semi-JMI 算法,分别应用于特征选择方法 MIM (MIM.m) 和 JMI (JMI.m) 的切换过程,用于在半监督场景中对特征进行排名。
Tutorial_SemiSupervised_FS.m:教程,介绍如何在半监督学习环境中使用建议的特征选择方法。
引用:
如果使用此代码,请引用以下论文:
Sechidis, K., & Brown, G. (2018). Simple strategies for semi-supervised feature selection. Machine Learning, 107, 1277–1298.
Matlab
4
2024-05-25
Matlab指纹特征提取程序
根据《基于Matlab实现的指纹图像细节特征提取》一文,编写了这个程序。
Matlab
0
2024-08-12
特征选择的计算方法
这本最新的CRC数据挖掘系列丛书介绍了特征选择的前沿思想和算法。
数据挖掘
2
2024-07-24
Matlab_Gui_图像处理程序
Matlab GUI图像处理程序的分享,感谢原作者的优秀作品!我觉得这个程序做得非常好,希望能和大家一起分享。
Matlab
0
2024-11-03