Tejas K开发了Intensity-Brightness-Invariant-CMFD算法,并提交给了IEEE Image Forensics和Security Journal。该算法提出了一种针对亮度变化和强度变化的复制移动伪造检测方法,具有高度准确性和完全鲁棒性。相较于传统物镜测量方法,该方法提取了DCT特征,提高了后处理技术的健壮性,尽管结果精度略低。当前复制移动伪造检测技术正不断演进,以应对旋转、重新缩放、模糊、噪点、强度变化和对比度变化等挑战。
基于强度-亮度不变的复制移动伪造检测算法
相关推荐
基于图像处理的车牌检测算法
这个项目实现了一种高效的车牌检测算法,适用于各种光照条件。该算法能够从图像中提取车牌信息,并将其传递给车牌识别阶段。您可以在德州仪器 (TI) 的 TMS320DM6437 数字视频开发平台或 RaspberryPie 上运行该算法。
步骤:1. 在 Windows 8.1 操作系统上安装 MATLAB R2014a。2. 运行 MATLAB 并将工作目录设置为包含所有项目文件的文件夹。3. 获取图像 (img) 和字符 (char) 数据集。4. 在 MATLAB 中运行 main_code.m 文件。5. 通过修改 main_code.m 文件中的以下代码行来切换不同的图像:- 将 im = imread('img/car8.jpg') 更改为 im = imread('img/car1.jpg')- 将 im = imread('img/car1.jpg') 更改为 im = imread('img/car2.jpg')- 以此类推。
Matlab
3
2024-05-25
基于统计的异常检测算法综述
基于统计的方法假设给定的数据集服从某种随机分布,通过不一致性测试来识别异常。然而,在实际应用中,数据往往不符合理想的数学分布,尤其是在高维情况下,估计数据点的分布变得极其困难。
算法与数据结构
0
2024-08-16
人脸检测算法
这是一个基于Matlab编写的人脸检测算法,操作简便,经过实际测试验证有效。
Matlab
0
2024-08-09
基于Matlab的Canny边缘检测算法实现
基于Matlab平台,详细介绍了Canny边缘检测算法的实现步骤,并提供了相应的代码实现。通过对算法原理和代码的解读,读者可以深入了解Canny算法的各个步骤,并掌握使用Matlab进行边缘检测的方法。
Matlab
3
2024-05-31
基于霍夫变换的圆形目标检测算法
霍夫变换是一种常用的图像处理技术,可以有效地检测图像中的几何形状,包括圆形。在视觉检测领域,基于霍夫变换的圆形目标检测算法被广泛应用于各种场景,例如:
工业零件尺寸测量: 精确测量圆形零件的直径、圆度等参数。
医学影像分析: 自动识别和定位医学图像中的肿瘤、细胞等圆形结构。
交通标志识别: 快速准确地识别道路上的圆形交通标志,例如限速标志、禁止通行标志等。
霍夫变换找圆算法的基本原理是将图像空间中的边缘点映射到参数空间中,通过统计参数空间中累积的点数来确定圆形的参数。该算法具有较强的鲁棒性和抗噪性,能够有效地检测出图像中不同大小和位置的圆形目标。
算法与数据结构
4
2024-05-23
基于matlab的susan角点检测算法优化
该算法在matlab平台上实现了susan角点检测,有效提升了检测精度和效率。
Matlab
0
2024-09-21
一种亮度和对比度不变的边缘检测方法——Matlab开发
介绍了一种在不同亮度和对比度条件下均能有效检测边缘的新方法,采用Matlab进行开发。
Matlab
2
2024-07-24
基于卷积神经网络的图像边缘检测算法
提出了一种利用卷积神经网络 (CNN) 进行图像边缘检测的新算法。该算法利用 CNN 强大的特征提取能力,学习图像边缘的复杂特征,从而实现精确的边缘检测。实验结果表明,该算法在边缘检测精度方面优于传统算法。
算法实现
该算法的核心是构建一个深度 CNN 模型,该模型包含多个卷积层和池化层,用于提取图像的多尺度特征。模型训练过程中,使用大量的标注图像数据,对模型进行监督学习,使其能够准确地预测图像边缘。
未来方向
未来工作将集中于以下几个方面:
探索更深、更有效的 CNN 架构,以进一步提高边缘检测精度。
研究将该算法应用于其他图像处理任务,例如目标识别和图像分割。
优化算法的计算效率,使其能够应用于实时图像处理系统。
Matlab
3
2024-05-30
基于残差分析的异常值检测算法matlab
基于残差分析的异常值检测算法专门针对具有线性回归关系的二维数据,能够有效识别和剔除数据中的异常值。
算法与数据结构
4
2024-07-16