这篇论文介绍了通过展开迭代阈值算法(ISTA)创建的顺序稀疏编码网络的Matlab代码。论文作者包括S. Wisdom,T. Powers,J. Pitton和L. Atlas。它在ICASSP 2017和arXiv上分别发表。代码支持了NIPS 2016复杂可解释机器学习研讨会。如果需要复制论文结果,请访问作者提供的网站。同时,代码还支持Caltech-256数据集的预处理。
使用顺序ISTA算法创建的递归神经网络(RNN)的Matlab代码
相关推荐
漫谈递归神经网络:RNN与LSTM
漫谈递归神经网络:RNN与LSTM
递归神经网络 (RNN) 是一种专门处理序列数据的神经网络,它能够捕捉时间序列信息,在自然语言处理、语音识别等领域有着广泛的应用。然而,传统的RNN存在梯度消失和梯度爆炸问题,难以学习到长距离依赖关系。为了克服这些问题,长短期记忆网络 (LSTM) 应运而生。LSTM 通过引入门控机制,可以选择性地记忆和遗忘信息,从而有效地捕捉长距离依赖关系。
RNN:捕捉序列信息的利器
RNN 的核心在于其循环结构,允许信息在网络中传递和积累。每个时间步,RNN 接收当前输入和前一时刻的隐藏状态,并输出新的隐藏状态和预测结果。这种循环结构使得 RNN 能够学习到序列数据中的时间依赖关系。
LSTM:破解长距离依赖难题
LSTM 通过引入输入门、遗忘门和输出门,精细地控制信息的流动。
遗忘门决定哪些信息需要从细胞状态中丢弃。
输入门决定哪些新信息需要被存储到细胞状态中。
输出门决定哪些信息需要从细胞状态中输出到隐藏状态。
RNN 与 LSTM 的应用
RNN 和 LSTM 在众多领域都有着广泛的应用,例如:
自然语言处理: 文本生成、机器翻译、情感分析等。
语音识别: 语音转文本、语音搜索等。
时间序列分析: 股票预测、天气预报等。
算法与数据结构
5
2024-05-27
神经网络分类的LRP算法Matlab代码实现
LRP算法是一种逐层相关性传播的方法,用于解释神经网络分类器预测的关键输入。该算法通过学习模型的拓扑结构,将输入的重要组成部分与分类结果相关联。LRP工具箱支持Matlab和Python环境,提供了Caffe深度学习框架的扩展功能,用于模型和数据的导入导出。
Matlab
0
2024-08-28
基于Matlab的神经网络代码
这是一份基于Matlab编写的神经网络代码示例。
Matlab
1
2024-07-28
递归神经网络设计与应用
《递归神经网络设计与应用》是一本涉及神经网络、大数据、优化、建模与控制的学习资料,专注于递归神经网络的理论与实际应用。
算法与数据结构
0
2024-10-10
神经网络的 PID-PIDC 控制算法 MATLAB 代码
该 MATLAB 代码实现了神经网络 PID-PIDC 控制算法。
Matlab
2
2024-05-25
BP神经网络学习算法的MATLAB实现
BP神经网络重要函数
在MATLAB中构建和训练BP神经网络,可以使用以下重要函数:
| 函数名 | 功能 ||---|---|| newff() | 生成一个前馈BP网络 || tansig() | 双曲正切S型(Tan-Sigmoid)传输函数 || logsig() | 对数S型(Log-Sigmoid)传输函数 || traingd() | 梯度下降BP训练函数 |
算法与数据结构
6
2024-05-21
BP神经网络Matlab代码的优化实现
BP神经网络Matlab源程序的详细实现方法及学习程序。
算法与数据结构
2
2024-07-24
MATLAB实现BP神经网络算法
BP神经网络(反向传播神经网络)是一种常见的监督学习算法,常用于分类、回归等任务。其基本原理包括前向传播和反向传播,通过计算误差并调整网络参数来优化模型。以下是MATLAB实现BP神经网络的基本步骤:
数据预处理:准备训练数据,并对数据进行归一化或标准化处理。
初始化权重和偏置:随机初始化神经网络的权重和偏置。
前向传播:输入数据通过网络层进行计算,得到预测值。
误差计算:使用均方误差(MSE)等指标计算预测结果与实际结果之间的差异。
反向传播:通过梯度下降法更新权重和偏置,减少误差。
训练迭代:多次迭代直到误差收敛或达到预设的停止条件。
测试与评估:用测试数据评估模型的效果。
Matlab
0
2024-11-05
MATLAB的神经网络实现
MATLAB提供了强大的工具和函数,用于实现反向传播神经网络(BP神经网络)。这些工具和函数使得在MATLAB环境中轻松地搭建和训练BP神经网络成为可能。使用MATLAB,可以有效地进行神经网络的参数调整和性能优化,以适应不同的数据集和应用场景。
Matlab
1
2024-07-23