LRP算法是一种逐层相关性传播的方法,用于解释神经网络分类器预测的关键输入。该算法通过学习模型的拓扑结构,将输入的重要组成部分与分类结果相关联。LRP工具箱支持Matlab和Python环境,提供了Caffe深度学习框架的扩展功能,用于模型和数据的导入导出。