该项目选择了股票投资管理网站作为信息系统,提供实时价格、历史数据、新闻报道等。使用数据挖掘技术进行基本分析和投资建议。项目涵盖爬取和解析Yahoo Finance、Reuters和Twitter数据(使用Java和twitter4j),采用J2EE和Struts-2框架的Web界面,结合jQuery的highstocks库显示技术图表。通过数据库集成和数据清洗,进行特征选择并应用线性回归、SVM和朴素贝叶斯分类算法,生成详细的市场分析和投资建议。
股市推荐系统基于数据挖掘的股票投资管理网站
相关推荐
基于数据挖掘的量化投资技术与应用
本书系统阐述数据挖掘技术在量化投资领域的应用。内容涵盖数据挖掘基础知识、核心技术方法及量化投资实践。
首先,本书剖析数据挖掘与量化投资的内在联系,阐明数据挖掘的概念、流程、内容及常用工具。
其次,深入讲解数据挖掘的核心技术方法,包括数据准备、数据探索、关联规则、数据回归、分类、聚类、预测、诊断、时间序列分析、智能优化等,并结合具体案例阐述其在量化投资中的应用。
最后,本书聚焦数据挖掘技术在量化投资中的综合应用,以统计套利、配对交易、程序化交易等为例,详细介绍策略挖掘、优化及系统构建方法。
数据挖掘
2
2024-05-29
利用股票指数简化投资组合模型
本节介绍利用股票指数对投资组合模型进行简化的方法。通过线性回归,可以找出股票收益与股票指数之间的线性关系。根据该线性关系,可将股票收益表示为股票指数的线性函数。该方法可以避免协方差矩阵的计算,从而简化模型。
算法与数据结构
4
2024-05-15
推荐系统数据挖掘课题
利用协同过滤算法,在 Eclipse IDE 中使用 Java 8 语言实现音乐推荐系统。
数据挖掘
6
2024-04-30
数据挖掘助推量化投资
利用数据挖掘技术,挖掘数据背后的价值,为量化投资提供科学依据和策略支撑。
数据挖掘
8
2024-05-01
基于 Spark 的推荐系统
使用内容标签 CBCF、协同过滤 UBCF 和协同过滤 IBCF 实现,已通过助教测试。
spark
4
2024-05-13
股票预测中数据挖掘的应用
数据挖掘在股票分析预测方面发挥着重要作用,通过分析大量数据来预测股市走势。
数据挖掘
2
2024-07-28
基于改进Apriori算法的图书推荐管理系统
针对传统Apriori算法在图书管理系统应用中存在的数据库频繁扫描和候选项目集过多导致运行缓慢的问题,设计了一种基于改进Apriori数据挖掘算法的信息推荐图书管理系统。该系统采用C/S和B/S混合架构,方便图书馆工作人员和读者访问图书信息。
系统功能模块中的数据预处理子模块从图书借阅数据库中提取借阅者和图书的相关信息数据,经过数据清理、转换和整合后,关联规则挖掘子模块根据处理后的数据挖掘出支持度大于最小支持度阈值且置信度大于最小置信度阈值的强关联规则,并利用改进的Apriori数据挖掘算法生成关联规则数据库。个性化推荐子模块根据借阅者信息及其在关联规则数据库中选择的书籍进行关联匹配,推荐与借阅者阅读书籍相关的书籍信息,实现图书信息的个性化推荐。
实验结果表明,该系统能够有效地推荐图书相关信息,在同时运行50个客户端的情况下,CPU占用率仅为6.47%,表现良好。
数据挖掘
2
2024-05-23
基于 Hadoop 的商品推荐系统
该系统利用协同过滤算法分析用户偏好,并通过多阶段 MapReduce 任务处理数据。每个阶段的处理结果都存储在 Hadoop 集群中,最终由 JobControl 协调任务流程,并将最终推荐结果写入 MySQL 数据库。
Hadoop
3
2024-05-23
基于评分的推荐系统实现
项目信息:
课程:CS532 数据挖掘
项目名称:基于评分的推荐系统
作者:Madhan Thangavel
学号:B00814916
开发环境:VS Code,remote.cs.binghamton
构建说明:
本项目使用 Apache Ant 进行构建,配置文件 build.xml 位于 RecommendationerSystem/src 目录下。
清除构建文件:
cd Rating--Recommender-System
ant -buildfile RecommendationerSystem/src/build.xml clean
说明: 该命令会删除所有由编译生成的 .class 文件。
编译项目:
ant -buildfile RecommendationerSystem/src/build.xml
说明: 该命令会编译项目源代码。
数据挖掘
2
2024-06-30