该系统利用协同过滤算法分析用户偏好,并通过多阶段 MapReduce 任务处理数据。每个阶段的处理结果都存储在 Hadoop 集群中,最终由 JobControl 协调任务流程,并将最终推荐结果写入 MySQL 数据库。
基于 Hadoop 的商品推荐系统
相关推荐
基于ItemCF协同过滤与Hadoop MapReduce的商品推荐系统资源下载
基于ItemCF协同过滤与Hadoop MapReduce的商品推荐系统资源下载。使用ItemCF进行协同过滤的商品推荐系统。步骤1:运行配置和路径;步骤2:格式化和去重;步骤3:计算得分矩阵;步骤4:计算同现矩阵;步骤5:矩阵相乘;步骤6:排序推荐。详细操作请查看Github链接:https://github.com/huangyueranbbc
Hadoop
3
2024-07-17
Spark 赋能的商品推荐系统
Spark 商品推荐系统
该项目借助 Spark 框架强大的数据处理能力,构建了一个高效的商品推荐系统。系统利用协同过滤、内容推荐等算法,分析用户行为和商品特征,为用户提供个性化的商品推荐。
核心功能
数据预处理:清洗、转换和整合来自不同数据源的用户行为数据和商品信息数据。
用户画像构建:分析用户历史行为,构建用户兴趣模型。
推荐算法应用:利用协同过滤、内容推荐等算法生成推荐结果。
推荐结果评估:评估推荐结果的准确性和有效性。
技术优势
分布式计算:Spark 的分布式架构能够处理大规模数据集,提高推荐系统的性能和可扩展性。
高效的算法库:Spark MLlib 提供丰富的机器学习算法库,方便开发者快速实现推荐算法。
实时推荐:Spark Streaming 支持实时数据处理,可实现实时推荐功能。
应用场景
电子商务平台
新闻资讯网站
音乐电影平台
社交网络
spark
4
2024-05-06
协同过滤商品推荐系统
构建商品推荐系统,利用协同过滤算法,根据用户画像及购买历史,推荐相关商品,为用户提供个性化购物体验。
算法与数据结构
6
2024-04-29
基于Hadoop的电影推荐系统源码优化.zip
《基于Hadoop的电影推荐系统源码详解》在当今信息爆炸的时代,如何从海量的电影数据中为用户推荐最合适的影片,成为了娱乐行业的热点问题。本项目是为了满足这一需求而构建的基于Hadoop的大数据处理平台上的电影推荐系统。项目采用Hadoop作为大数据处理框架,Python作为主要开发语言,MySQL作为数据存储,通过分析用户的历史行为和偏好,为用户提供个性化的电影推荐。Hadoop是一个开源的分布式计算框架,允许在廉价硬件上进行大规模数据处理。在本项目中,Hadoop负责处理和分析大量电影评分数据,如ratings.csv和u.data,这些文件包含了用户对电影的评分记录。Python在本项目中扮演了重要角色,利用其简洁的语法和丰富的库支持进行数据预处理和结果分析。MySQL8.0作为关系型数据库,用于存储经过处理后的用户信息和电影元数据。推荐系统的核心算法包括协同过滤和基于内容的推荐,采用混合推荐策略以提高推荐的准确性和多样性。项目还涉及异常值检测、缺失值填充和数据清洗等预处理步骤,展示了大数据处理的实际应用。
Hadoop
4
2024-07-16
基于 Spark 的推荐系统
使用内容标签 CBCF、协同过滤 UBCF 和协同过滤 IBCF 实现,已通过助教测试。
spark
4
2024-05-13
基于评分的推荐系统实现
项目信息:
课程:CS532 数据挖掘
项目名称:基于评分的推荐系统
作者:Madhan Thangavel
学号:B00814916
开发环境:VS Code,remote.cs.binghamton
构建说明:
本项目使用 Apache Ant 进行构建,配置文件 build.xml 位于 RecommendationerSystem/src 目录下。
清除构建文件:
cd Rating--Recommender-System
ant -buildfile RecommendationerSystem/src/build.xml clean
说明: 该命令会删除所有由编译生成的 .class 文件。
编译项目:
ant -buildfile RecommendationerSystem/src/build.xml
说明: 该命令会编译项目源代码。
数据挖掘
2
2024-06-30
基于Access 2007的商品销售管理系统
这是一个功能完善的简单销售系统,使用Access 2007开发。
Access
3
2024-05-12
基于Spark推荐算法的电影推荐系统设计与实现
本项目利用Spark推荐算法开发了一套电影推荐系统,后端采用了SpringBoot,前端则使用微信小程序进行展示。系统涵盖了数据处理、推荐算法、分布式计算、微服务架构和移动端开发等多个IT领域知识点。具体包括Spark的RDD和DataFrame API用于高效处理大规模用户行为数据,以及协同过滤、矩阵分解等经典推荐算法的应用。SpringBoot框架简化了后端开发,提供了高内聚低耦合的特性,而微信小程序则通过优秀的用户体验和轻量级特性增强了前端展示。
spark
2
2024-07-29
基于Spark的电影推荐系统数据集
该数据集包含了推荐系统中常用的电影数据,可以用于基于Spark的电影推荐系统开发和研究。
spark
6
2024-04-30