针对传统Apriori算法在图书管理系统应用中存在的数据库频繁扫描和候选项目集过多导致运行缓慢的问题,设计了一种基于改进Apriori数据挖掘算法的信息推荐图书管理系统。该系统采用C/S和B/S混合架构,方便图书馆工作人员和读者访问图书信息。
系统功能模块中的数据预处理子模块从图书借阅数据库中提取借阅者和图书的相关信息数据,经过数据清理、转换和整合后,关联规则挖掘子模块根据处理后的数据挖掘出支持度大于最小支持度阈值且置信度大于最小置信度阈值的强关联规则,并利用改进的Apriori数据挖掘算法生成关联规则数据库。个性化推荐子模块根据借阅者信息及其在关联规则数据库中选择的书籍进行关联匹配,推荐与借阅者阅读书籍相关的书籍信息,实现图书信息的个性化推荐。
实验结果表明,该系统能够有效地推荐图书相关信息,在同时运行50个客户端的情况下,CPU占用率仅为6.47%,表现良好。