数据挖掘中,预测建模是一种分析多个自变量或预测变量与一个响应或因变量之间数学相关性的技术。在机器学习中,决策树用于分类和回归目的,分类树称为CART模型,而回归树用于预测。聚焦于比较线性回归和回归树的概念及其在UCI数据集上的应用。研究发现,决策树相比线性回归在预测建模中表现更优,特别是在最小均方误差的选择上。