拟牛顿法是一种用于在优化问题中寻找函数极小值的高效算法,它借鉴了牛顿法的思想,但通过近似Hessian矩阵的方式来提升计算速度。LBFGS是拟牛顿法的一种特殊形式,特别适合解决大规模优化问题,因其在节省存储空间和加速计算方面表现出色。相比传统的牛顿法,LBFGS算法避免了直接处理整个Hessian矩阵,而是利用有限历史梯度信息来近似逆Hessian矩阵。该算法通过迭代优化过程中的搜索方向和步长,有效地提高了优化算法的效率。